Боинг 737 скорость отрыва – Какая скорость самолета при взлете

Содержание

Скорость пассажирского самолета при взлете

Многие пассажиры интересуются, какую скорость развивает лайнер при взлёте и посадке. Взлёт представляет собой процесс, который длится с момента движения летательного аппарата до его отрыва от взлётной полосы. Воздушное судно способно взлететь, если подъёмная сила приобретёт значение, превышающее массу самого судна. Скорость самолёта при взлёте у разных марок отличается.

Почему самолёт гудит перед взлётом

Люди, впервые отправляющиеся в полёт, пугаются странных звуков, издаваемых лайнером в начале движения. Не нужно паниковать и нервничать. Гул перед взлётом – это нормальное явление. Когда запускаются двигатели, в салоне может шуметь система кондиционирования. Это лётчики проверяют вентиляторы на предмет исправности.

Двигатели подготавливают к полету, и звуки бывают очень громкими. Гидравлический мотор сильно гудит, иногда из-за работы бортового оборудования слышно рычание. Через 2 минуты, когда лайнер взлетит, убираются закрылки. Это сопровождается характерным шумом в салоне. На эти звуки не нужно реагировать.

Виды взлёта

Для отрыва от земли летательный аппарат преодолевает препятствия: протяжённость взлётно-посадочной полосы, погодные факторы, направление ветра. Авиаконструкторы разработали разные способы обхода этих препятствий. Специалисты усовершенствовали не только конструкцию воздушных судов, но и процесс взлёта.

Различают 4 разновидности взлёта:

  • Классический. Во время движения лайнера по взлётной полосе двигатель постепенно набирает тягу.
  • С тормозов. Ускорение движения летательного аппарата начинается после достижения двигателями установленного режима тяги. До этого воздушное судно с помощью тормозов удерживается на земле.
  • Посредством дополнительных средств. Применимо для боевых самолётов, которые несут службу на авианосцах. Малую протяжённость взлётно-посадочной полосы компенсируют катапультами, ракетными двигателями, установленными на самолёт или трамплинами.

Если у лайнера двигатели с вертикальной тягой (российский Як-38, к примеру), возможен вертикальный взлёт. Такие суда, как вертолёты, набирают сначала высоту с места по вертикали или их разгоняют с небольшого расстояния и постепенно переводят в горизонтальный полёт.

Как происходит взлёт

Процесс начинается с начала движения авиалайнера по взлётно-посадочной полосе для набора скорости и оканчивается на высоте перехода.

Важно! Аэродинамика самолёта осуществляется благодаря крылу особой конфигурации. Она идентична у всех судов.

Снизу профиль крыла плоский, сверху – выпуклый вне зависимости от типа лайнера. Свойства воздушного потока, проходящего под крылом, не изменяются. Воздух, прошедший через выпуклость верней части крыла, сужается и через нее проходит меньшее количество воздуха. Скорость разгона самолёта увеличивают, чтобы воздушный поток прошёл за единицу времени.

Из-за этого возникает разница в давлении воздуха в верхней и нижней части крыла лайнера. Подъёмную силу образует разница давления. Сила подталкивает крыло вверх, вместе с ним и самолёт. Он взлетает с полосы в момент, когда подъёмная сила превосходит вес самолёта. Это возможно путём набора скорости.

Какую скорость развивает лайнер перед взлётом и приземлением

Скорость пассажирских самолётов при взлёте и посадке отличается.

Важно! Только после оценки погодных условий и особенностей взлётной полосы лётчик принимает решение, какая скорость разгона оптимальная, чтобы лайнер взлетел.

Взлёт пассажирского Боинга 737

Гражданские самолёты взлетают по классической схеме: при отрыве от земли двигатель набирает нужную тягу. Процесс:

  1. Когда двигатель достигнет 800 оборотов в минуту, авиалайнер начинает движение. Лётчик держит ручку управления в нейтральном положении, плавно отпуская тормоза. Воздушное судно разгоняется на 3-х колёсах.
  2. Скорость самолёта при взлёте должна достигнуть около 180 км/ч. Лётчик начинает плавно тянуть ручку, отклоняются щитки-закрылки, и нос аппарата поднимается. Лайнер ускоряется на 2-х шасси.
  3. Пока Boeing не набрал 220км/ч, он ускоряется с приподнятым носом на 2-х колёсах. Достигнув этой отметки, судно взлетает.

Заключительный этап полёта – посадка. С высоты 25 метров начинается снижение. У Боинга 737 посадочная скорость 250 – 270 км/ч.

Скорость взлета Боинг 747

Boeing 747 способен развить взлётную скорость до 270 км/ч. Посадка совершается в 4 этапа:

  1. Выравнивание. Начинается на 8-10 метрах и оканчивается на 1 метре. Вертикальная скорость снижения приближается к нулевой отметке.
  2. Выдерживание. Скорость падает, судно плавно снижается.
  3. Парашютирование. Вертикальная скорость увеличивается, подъёмная сила крыла уменьшается.
  4. Приземление.

При контакте с землёй фиксируют посадочную скорость авиалайнера. У Боинга 747 она около 260 км/ч.

Какая скорость у самолёта при взлёте, зависит от разных факторов: особенностей взлётно-посадочной полосы, направления и силы ветра, влажности воздуха и давления.  Разогнав пассажирский лайнер, лётчик плавно отпускает тормоза. Судно продолжает двигаться на 3-х шасси. Скорость возрастает и в момент взлёта достигает примерно 220-270 км/ч. Скорость самолётов разных моделей при взлёте и посадке отличается.

Подписывайтесь на наш канал Яндекс Дзен и ставьте палец вверх!

moscow-airports.com

Скорость самолета при взлете | Хайтек агрегатор


Вопрос о том, какую скорость развивает самолет при взлёте, интересует многих пассажиров. Мнения непрофессионалов всегда расходятся – кто-то ошибочно предполагает, что скорость всегда одинаковая для всех видов данной авиатехники, другие правильно считают, что она различная, но не могут объяснить почему. Постараемся разобраться в этой теме.

Взлёт

Взлёт – это процесс, занимающий временную шкалу от начала движения самолёта до его полного отрыва от взлетно-посадочной полосы. Взлёт возможно только при соблюдении одного условия: подъёмная сила должна приобрести значение больше значения массы взлетающего объекта.

Виды взлёта

Различные «мешающие» факторы, которые приходится преодолевать для поднятия самолёта в воздух (погодные условия, направление ветра, ограниченная взлётная полоса, ограниченная мощность двигателя и т.д.), побудили авиаконструкторов к созданию множества способов их обхода. Усовершенствовалась не только конструкция летающих аппаратов, но и сам процесс их взлёта. Таким образом, были разработаны несколько видов взлёта:

  • С тормозов. Разгон самолёта начинается только после того, как двигатели достигнут установленного режима тяги, а до тех пор аппарат удерживается на месте при помощи тормозов;
  • Простой классический взлёт, предполагающий постепенный набор тяги двигателя во время движения самолёта по взлётной полосе;
  • Взлёт с использованием вспомогательных средств. Характерно для самолётов, несущих боевую службу на авианосцах. Ограниченная дистанция взлётной полосы компенсируется использованием трамплинов, катапультными устройствами или даже установленными на самолёт дополнительными ракетными двигателями;
  • Вертикальный взлёт. Возможен при наличии у самолёта двигателей с вертикальной тягой (пример – отечественный Як-38). Такие аппараты, аналогично вертолётам, сначала набирают высоту с места по вертикали либо при разгоне с очень малого расстояния, а затем плавно переходят в горизонтальный полёт.

Рассмотрим в качестве примера фазы взлёты реактивного самолёта Боинг 737.


Взлет Boeing 737-800

Взлёт пассажирского Boeing 737

Практически каждый гражданский реактивный самолёт поднимается в воздух по классической схеме, т.е. двигатель набирает нужную тягу непосредственно в самом процессе взлёта. Выглядит это следующим образом:

  • Движение самолёта начинается после достижения двигателем около 800 оборотов/мин. Лётчик постепенно отпускает тормоза, держа при этом ручку управления нейтрально. Разбег начинается на трёх колёсах;
  • Для начала отрыва от земли Боинг должен приобрести скорость около 180 км/ч. При достижении этого значения пилот плавно тянет ручку, что ведёт к отклонению щитков-закрылков и, как следствие, поднятию носа аппарата. Дальше самолёт разгоняется уже на двух колёсах;
  • С приподнятым носом на двух колёсах самолёт продолжает разгон до тех пор, пока скорость не достигнет 220 км/ч. При достижении этого значения самолёт отрывается от земли.

Скорость взлета других типовых самолетов

  • Airbus A380 – 269 км/ч;
  • Boeing 747 – 270 км/ч;
  • Ил 96 – 250 км/ч;
  • Ту 154М – 210 км/ч;
  • Як 40 – 180 км/ч.

Приведенной скорости не всегда достаточно для отрыва. В ситуациях, когда сильный ветер дует в направлении взлёта аппарата, требуется большая наземная скорость. Или, наоборот – при встречном ветре достаточно меньшей скорости.

По материалам techcult

24hitech.ru

Скорость самолета при взлете и посадке: важные нюансы

В технических характеристиках летательного аппарата важно все. Ведь буквально от каждой мелочи зависит жизнеспособность лайнеров и безопасность людей, находящихся на борту. Однако есть параметры, которые можно назвать основными. Таким, например, является скорость взлета и посадки воздушного судна.

Важный взлет

Для работы самолетов и их эксплуатации крайне важно знать, какой именно может быть скорость самолета при взлете, а именно в тот момент, когда он отрывается от земли. У разных моделей лайнеров этот параметр будет разным: для более тяжелых машин показатели побольше, для машин полегче показатели поменьше.

Взлетная скорость важна по той причине, что проектировщикам и инженерам, занимающимся изготовление и просчетом всех характеристик самолета, эти данные необходимы, чтобы понять, насколько большой будет подъемная сила.

В разных моделях заложены разные параметры разбега и скорости взлета. Так, например, Аэробус А380, который на сегодняшний день считается одним из самых современных самолетов, разгоняется на взлетной полосе до 268 км в час. Боингу 747 на это потребуется разбег в 270 км в час. Российский представитель авиаотрасли Ил 96 имеет взлетную скорость 250 км в час. У Ту 154 она равна 210 км в час.

Но эти цифры представлены в среднем значении. Ведь на конечную скорость разгона лайнера по полосе влияет целый ряд факторов, среди которых:

  • Скорость ветра
  • Направление ветра
  • Длина ВПП
  • Атмосферное давление
  • Влажность воздушных масс
  • Состояние ВПП

Все это оказывает свое воздействие и, может, как притормозить лайнер, так и придать ему небольшое ускорение.

Как именно происходит взлет

Как отмечают специалисты, аэродинамика любого воздушного лайнера характеризуется конфигурацией крыльев самолета. Как правило, она стандартна и одинакова для разных типов самолетов – нижняя часть крыла всегда будет плоской, верхняя – выпуклой. Разница состоит лишь в мелких деталях, и от типа воздушного судна не зависит.

Воздух, проходящий под крылом, не меняет своих свойств. Но тот воздух, который оказывается сверху начинает сужаться. А значит, что сверху проходит меньший объем воздуха. Такое соотношение становится причиной разницы давлений вокруг крыльев лайнера. И именно она формирует ту самую подъемную силу, толкающую крыло вверх, а вместе с ним и поднимающая самолет.

Отрыв самолета от земли происходит в тот момент, когда подъемная сила начинает превышать вес самого лайнера. А это может происходить исключительно с увеличением скорости самого самолета – чем она выше, тем больше повышается разница давлений вокруг крыльев.

У пилота же есть возможность работать с подъемной силой – для этого в конфигурации крыла предусмотрены закрылки. Так, если он их опустит, то они поменяют вектор подъемной силы на режим резкого набора высоты.

Ровный же полет лайнера обеспечивается в том случае, когда соблюдается баланс между весом лайнера и подъемной силой.

Какие типы взлета бывают

Для разгона пассажирского самолета пилотам требуется выбрать специальный режим работы двигателей, называющийся взлетным. Он продолжается лишь несколько минут. Но бывают и исключения, когда рядом с аэродромом располагается какой-то населенный пункт, самолет в таком случае может уходить на взлет в обычном режиме, что позволяет снизить шумовую нагрузку, т.к. при взлетном режиме двигатели самолета очень громко ревут.

Специалисты выделяют два типа взлета пассажирских лайнеров:

  1. взлет с тормозов: имеется в виду, что поначалу самолет удерживается на тормозах, двигатели же переходят на режим максимальной тяги, после чего снимается лайнер с тормозов и начинается разбег
  2. Взлет с небольшой остановкой на ВПП: в такой ситуации лайнер начинает бежать по взлетной дорожке сразу же без какой-либо предварительной перестановки двигателей на требуемый режим. После скорость растет и достигает требуемых сотен километров в час

Нюансы посадки

Под посадкой пилоты понимают конечный этап полета, который представляет собой спуск с неба на землю, замедление лайнера и полную его остановку на полосе у аэропорта. Снижение самолета начинается с 25 метров. И по факту посадка в воздухе отнимает всего несколько секунд.

При посадке перед пилотами стоит целый спектр задач, т.к. происходит она по факту в 4 разных этапа:

  1. Выравнивание – в этом случае вертикальная скорость снижения лайнера уходит к нулю. Этот этап начинается в 8-10 метрах над землей и заканчивается на уровне 1 метра
  2. Выдерживание: в этом случае скорость лайнера продолжает уменьшаться, а снижение остается плавным и продолжающимся
  3. Парашютирование: на этом этапе отмечается снижение подъемной силы крыльев и увеличение вертикальной скорости самолета
  4. Приземление: под ним понимают непосредственное касание твердой поверхности шасси

Именно на этапе приземления пилоты и фиксируют посадочную скорость самолета. Опять-таки, в зависимости от модели разнится и скорость. Например, у Боинга 737 она будет равна 250-270 км в час. Аэробус А380 садится при таких же параметрах. Если же самолет поменьше и полегче, ему хватит и 200 км в час.

Важно понимать, что на скорость посадки оказывают непосредственное воздействие ровно те же факторы, что влияют и на взлет.

Временные промежутки здесь очень небольшие, а скорости огромные, что и становится причиной наиболее частых катастроф именно на данных этапах. Ведь у пилотов крайне мало времени на принятие стратегически важных решений, и каждая ошибка может стать фатальной. Поэтому отработке посадки и взлета уделяется очень много времени в процессе обучения пилотов.

vpolete.online

при какой скорости взлетают и как летают

Вы хотите преодолеть страх перед полетами? Самый лучший способ — поподробнее узнать о том, как самолет летает, с какой скоростью он движется, на какую высоту поднимается. Люди боятся неизвестности, а когда вопрос изучен и рассмотрен, то все становится простым и понятным. Поэтому обязательно прочитайте о том, как летает самолет — это первый шаг в борьбе с аэрофобией.

Почему самолет поднимается в воздух?

Если посмотреть на крыло, то вы увидите, что оно не плоское. Нижняя его поверхность гладкая, а верхняя имеет выпуклую форму. За счет этого при повышении скорости воздушного судна меняется давление воздуха на крыло. Снизу крыла скорость потока меньше, поэтому давление больше. Сверху скорость потока больше, а давление меньше. Именно за счет этого перепада давления крыло и тянет самолет вверх. Данная разница между нижним и верхним давлением называется подъемной силой крыла. По сути, при разгоне воздушное судно выталкивает вверх при достижении определенной скорости (разницы давлений).

Воздух обтекает крыло с разной скоростью, выталкивая самолет вверх

Данный принцип был обнаружен и сформулирован родоначальником аэродинамики Николаем Жуковским еще в 1904 году, и уже через 10 лет был успешно применен во время первых полетов и испытаний. Площадь, форма крыла и скорость полета рассчитаны таким образом, чтобы без проблем поднимать в воздух многотонные самолеты. Большинство современных лайнеров летают со скоростями от 180 до 260 километров в час — этого вполне достаточно для уверенного держания в воздухе.

На какой высоте летают самолеты?

Разобрались, почему летают самолеты? Теперь мы расскажем вам о том, на какой высоте они летают. Пассажирские воздушные судна “оккупировали” коридор от 5 до 12 тысяч метров. Крупные пассажирские лайнеры обычно летают на высоте 9-12 тысяч, более мелкие — 5-8 тысяч метров. Данная высота оптимальна для движения воздушных суден: на такой высоте сопротивление воздуха снижается в 5-7 раз, но кислорода еще достаточно для нормальной работы двигателей. Выше 12 тысяч самолет начинает проваливаться — разреженный воздух не создает нормальную подъемную силу, а также наблюдается острая нехватка кислорода для горения (падает мощность двигателей). Потолок для многих лайнеров — 12 200 метров.

Обратите внимание: самолет, который летит на высоте в 10 тысяч метров, экономит примерно 80% горючего по сравнению с тем, если бы он летел на высоте в 1000 метров.

Какая скорость самолета при взлете

Давайте рассмотрим, как взлетает самолет. Набирая определенную скорость он отрывается от земли. В этот момент авиалайнер наиболее неуправляем, поэтому взлетные полосы делают со значительным запасом по длине. Скорость отрыва зависит от массы и формы воздушного судна, а также от конфигурации его крыльев. Для примера мы приведем табличные значения для наиболее популярных видов самолета:

  1. Boeing 747 -270 км/ч.
  2. Airbus A 380 — 267 км/ч.
  3. Ил 96 — 255 км/ч.
  4. Boeing 737 — 220 км/ч.
  5. Як-40 -180 км/ч.
  6. Ту 154 — 215 км/ч.

В среднем, скорость отрыва у большинства современных лайнеров 230-250 км/ч. Но она непостоянна — все зависит от ускорения ветра, массы летательного аппарата, взлетной полосы, погоды и других факторов (значения могут отличаться на 10-15 км/ч в ту или другую сторону). Но на вопрос: при какой скорости взлетает самолет можно отвечать — 250 километров в час, и вы не ошибетесь.

Разные типы самолетов взлетают с разной скоростью

На какой скорости садится самолет

Посадочная скорость, также, как и взлетная, может сильно отличаться в зависимости от моделей воздушного судна, площади его крыла, веса, ветра и других факторов. В среднем, она варьируется от 220 до 250 километров в час.

Обратите внимание: скорость в воздухе (в том числе и посадочная скорость) считается не относительно земли, а относительно воздуха. Если вы засечете ее по GPS или ГЛОНАСС, то приборы покажут вам порядка 170-180 километров в час, но фактическая будет в указанном выше интервале.

Надеемся, что данная информация ответит на ваши вопросы, и летать вам станет проще. Напомним, что самолет — самый безопасный вид транспорта!

Facebook

Twitter

Вконтакте

Одноклассники

Google+

samoleting.ru

Какая скорость при посадке самолета и при взлете?

Скорость при посадке и взлете самолета – параметры, рассчитываемые индивидуально для каждого лайнера. Не существует стандартного значения, которого должны придерживаться все пилоты, ведь самолеты имеют разный вес, габариты, аэродинамические характеристики. Однако значение скорости при посадке самолета является важным, и несоблюдение скоростного режима может обернуться трагедией для экипажа и пассажиров.

Как осуществляется взлет?

Аэродинамика любого лайнера обеспечивается конфигурацией крыла или крыльев. Эта конфигурация практически для всех самолетов одинакова за исключением мелких деталей. Нижняя часть крыла всегда плоская, верхняя – выпуклая. Причем, тип самолета от этого не зависит.

Воздух, который при наборе скорости проходит под крылом, не меняет своих свойств. Однако воздух, который в то же время проходит через верхнюю часть крыла, сужается. Следовательно, через верхнюю часть проходит меньший объем воздуха. Это приводит к возникновению разницы давления под и над крыльями самолета. В результате давление над крылом понижается, под крылом – повышается. И именно благодаря разнице давлений образуется подъемная сила, которая толкает крыло вверх, а вместе с крылом и сам самолет. В тот момент, когда подъемная сила превышает вес лайнера, самолет отрывается от земли. Это происходит с увеличением скорости движения лайнера (при росте скорости растет и подъемная сила). Также у пилота есть возможность управлять закрылками на крыле. Если опустить закрылки, подъемная сила под крылом меняет вектор, и самолет резко набирает высоту.

Интересно то, что ровный горизонтальный полет лайнера будет обеспечен в том случае, если подъемная сила будет равна весу самолета.

Итак, подъемная сила определяет, при какой скорости самолет оторвется от земли и начнет полет. Также играет роль вес лайнера, его аэродинамические характеристики, сила тяги двигателей.

Для того чтобы пассажирский самолет взлетел, пилоту необходимо развить скорость, которая обеспечит требуемую подъемную силу. Чем будет большей скорость разгона, тем и подъемная сила будет выше. Следовательно, при большой скорости разгона самолет быстрее пойдет на взлет, чем если бы он двигался с небольшой скоростью. Однако конкретное значение скорости рассчитывается для каждого лайнера индивидуально, с учетом его фактического веса, степени загрузки, погодных условий, длины взлетной полосы и т. д.

Если сильно обобщить, то известный пассажирский лайнер "Боинг-737" отрывается от земли, когда его скорость растет до 220 км/час. Другой известный и огромный "Боинг-747" с большим весом отрывается от земли при скорости 270 километров в час. А вот меньший лайнер "Як-40" способен взлететь при скорости 180 километров в час из-за небольшого веса.

Виды взлета

Есть разные факторы, которые определяют скорость при взлете авиационного лайнера:

  1. Погодные условия (скорость и направление ветра, дождь, снег).
  2. Длина взлетно-посадочной полосы.
  3. Покрытие полосы.

В зависимости от условий, взлет может осуществляться разными способами:

  1. Классический набор скорости.
  2. С тормозов.
  3. Взлет при помощи специальных средств.
  4. Вертикальный набор высоты.

Первый способ (классический) применяется чаще всего. Когда ВВП имеет достаточную длину, то самолет может уверенно набирать требуемую скорость, необходимую для обеспечения большой подъемной силы. Однако в том случае, когда длина ВВП ограничена, то самолету может не хватить расстояния для набора требуемой скорости. Поэтому он стоит некоторое время на тормозах, а двигатели постепенно набирают тягу. Когда тяга становится большой, тормоза снимаются, и самолет резко срывается с места, быстро набирая скорость. Таким образом удается сократить взлетный путь лайнера.

Про вертикальный взлет говорить не приходится. Он возможен в случае наличия специальных двигателей. А взлет с помощью специальных средств практикуется на военных авианосцах.

Какая скорость самолета при посадке?

Лайнер садится на посадочную полосу не сразу. В первую очередь происходит снижение скорости лайнера, сбавление высоты. Сначала самолет касается взлетно-посадочной полосы колесами шасси, затем движется с большой скоростью уже на земле, и только тогда тормозит. Момент контакта с ВВП почти всегда сопровождается тряской в салоне, что может вызывать беспокойство у пассажиров. Но ничего страшного в этом нет.

Скорость при посадке самолета практически лишь немного ниже, чем при взлете. Большой "Боинг-747" при приближении к взлетно-посадочной полосе имеет скорость в среднем 260 километров в час. Такая скорость должна быть у лайнера в воздухе. Но, опять-таки, конкретное значение скорости рассчитывается индивидуально для всех лайнеров с учетом их веса, загруженности, погодных условий. Если самолет очень большой и тяжелый, то и скорость посадки должна быть выше, ведь при посадке также необходимо "держать" требуемую подъемную силу. Уже после контакта с ВВП и при движении по земле пилот может тормозить средствами шасси и закрылок на крыльях самолета.

Скорость полета

Скорость при посадке самолета и при взлете сильно отличается от скорости, с которой движется самолет на высоте 10 км. Чаще всего самолеты летают на скорости, которая составляет 80% от максимальной. Так максимальная скорость популярного Airbus A380 составляет 1020 км/час. Фактически полет на крейсерской скорости составляет 850-900 км/час. Популярный "Боинг 747" может лететь со скоростью 988 км/час, но фактически его скорость составляет тоже 850-900 км/час. Как видите, скорость полета кардинально отличается от скорости при посадке самолета.

Отметим, что сегодня компания Boeing разрабатывает лайнер, который сможет набирать скорость полета на больших высотах до 5000 километров в час.

В заключение

Конечно, скорость при посадке самолета – это чрезвычайно важный параметр, который рассчитывается строго для каждого лайнера. Но нельзя назвать конкретное значение, при котором взлетают все самолеты. Даже одинаковые модели (например, "Боинги-747") будут взлетать и идти на посадку при разной скорости в силу различных обстоятельств: загруженность, объем заправленного топлива, длина взлетной полосы, покрытие полосы, наличие или отсутствие ветра и т. д.

Теперь вы знаете, какова скорость самолета при посадке и при его взлете. Средние значения известны всем.

fb.ru

Аэродинамика самолета Боинг-737 (300 – 900) — КиберПедия

Аэродинамика самолета Боинг-737 (300 – 900)

 

Боинг 737 — самый популярный в мире узкофюзеляжный реактивный пассажирский самолёт. Он является самым массово производимым реактивным пассажирским самолётом за всю историю пассажирского авиастроения. Несмотря на это, фирма Боинг не опубликовала общедоступного документа, отражающего аэродинамические особенности своего детища. В статье предпринимается попытка осветить данный вопрос по аналогии, как это делалось на всех советских самолетах. Основной текст касается «классической» модификации (300-500), с дополнительной информацией по модификации NG (600-900).

 

Содержание

Особенности аэродинамической компоновки самолета Боинг-737

Система управления самолетом

Скорость полета

Расчёт центровки самолёта

Взлет самолета

Посадка самолета

Устойчивость и управляемость

Система автоматического управления

Полет самолета при несимметричной тяге

Отказобезопасность

Недостатки самолета

Особенности аэродинамической компоновки самолета Боинг-737

 

Геометрические характеристики крыла

 

“Classic”

Площадь крыла 1135 ft2 или 105.44м2.

Размах крыла 94’9’’ или 28.88 м (102’5’’ или 31.22 м с winglets)

Относительное удлинение крыла 9.16

Сужение крыла 0.24

Угол стреловидности 25 градусов

Средняя аэродинамическая хорда (САХ) 134,5 inches или 341,63 см

 

“NG” (Размах крыла 35.75 м с winglets)

 

 

Максимальное аэродинамическое качество самолета – 15.

 

Вертикальные законцовки крыла (winglets).

 

Законцовки представляют собой дополнительные профилированные поверхности, предназначенные для уменьшения концевого вихря крыла, благодаря чему уменьшается индуктивное сопротивление.

См. http://aviacom.ucoz.ru/Principleflight.doc стр.45

Законцовки могут устанавливаться по желанию заказчика и благодаря их установке улучшаются следующие качества самолета:

1. Взлетные характеристики. Особенно в аэропортах, где максимальный взлетный вес самолёта ограничен препятствиями и/или ограничениями по шумам, аэропортах с высокой температурой, большим превышением. Поскольку увеличение аэродинамического качества обеспечивает более крутой набор высоты после отрыва.
2. Продлевается жизнь двигателей и уменьшаются расходы на их обслуживание. Лучшие характеристики набора высоты позволяют уменьшать требуемый режим двигателей на взлете. Также улучшение аэродинамического качества уменьшает потребный режим двигателей в крейсерском полете (до 4%).
3. Экономия топлива. В крейсерском полете километровый расход топлива уменьшается на 6%. Соответственно на ту же дальность можно перевезти больше груза.
4. Самолет быстрее набирает крейсерский эшелон, где воздушное пространство менее загружено и есть возможность летать по спрямленным маршрутам.



 

Кроме очевидных достоинств законцовки имеют ряд недостатков:

1. Дополнительный вес 170-235 кг.

2. Усиливается чрезмерная поперечная устойчивость самолёта (см. раздел Устойчивость и управляемость), что приводит к дополнительным ограничениям бокового ветра на посадке.

3. За счет смещения центра масс крыла назад уменьшается критическая скорость флаттера крыла. (см. http://aviacom.ucoz.ru/Principleflight4.doc стр.17)

Это одна из возможных причин, приведших к необходимости ограничения угла выпуска интерцепторов-элеронов на V>320 узлов (Load Alleviation System).

4. Версия программного обеспечения FMC часто не учитывает изменения лётных характеристик после установки законцовок. Особенно эти несоответствия заметны в расчёте характеристик снижения.

 

Поперечное управление

Поперечное управление осуществляется элеронами (ailerons) и интерцепторами-элеронами (flight spoilers). На «классике» 4 секции интерцепторов-элеронов (см. рисунок в разделе Механизация крыла).

На NG восемь секций интерцепторов-элеронов (см. рисунок ниже).

 

 

При наличии гидропитания на рулевых приводах элеронов поперечное управление работает следующим образом:

-перемещение штурвальных колес штурвалов (полное отклонение – ±107,5 градусов) по тросовой проводке передается на рулевые приводы элеронов и далее на элероны;

-кроме элеронов, рулевые приводы элеронов перемещают пружинную тягу (aileron spring cartridge), связанную с системой управления интерцепторами и таким образом приводят её в движение;

-движение пружинной тяги передается на устройство изменения передаточного коэффициента (spoiler ratio changer). Здесь управляющее воздействие уменьшается в зависимости от величины отклонения рукоятки управления интерцепторами (speed brake lever). Чем больше отклонены интерцепторы в режиме воздушных тормозов, тем меньше коэффициент передачи перемещения штурвалов по крену;



-далее перемещение передается на механизм управления интерцепторами (spoiler mixer), где оно суммируется с перемещением рукоятки управления интерцепторами. На крыле с поднятым элероном интерцепторы приподнимаются, а на другом крыле – приспускаются. Таким образом, одновременно выполняются функции воздушного тормоза и поперечного управления. Интерцепторы включаются в работу при повороте штурвального колеса более 10 градусов;

-также, вместе со всей системой, движется тросовая проводка от устройства изменения передаточного коэффициента до устройства зацепления (lost motion device) механизма связи штурвалов.

 

Устройство зацепления соединяет правый штурвал с тросовой проводкой управления интерцепторами при рассогласовании более 12 градусов (поворота штурвального колеса).

 

На штурвальном колесе нанесены деления (units), позволяющие контролировать величину отклонения. Каждый unit соответствует 6° отклонения штурвального колеса.

 

Конструкция рулевых приводов элеронов такова, что при отсутствии гидропитания они позволяют пилотам двигать тросовую проводку элеронов напрямую, используя корпус рулевого привода, как жесткую тягу. При этом в системе управления образуется зона нечувствительности (люфт) 3° по углу поворота колеса штурвала. При повороте колеса штурвала на угол более 12° придёт в движение тросовая проводка системы управления интерцепторами. Если при этом рулевые машины интерцепторов будут работать, то интерцепторы будут работать в помощь элеронам.

 

Эта же схема позволяет второму пилоту управлять самолётом по крену с помощью интерцепторов при заклинении штурвала командира или тросовой проводки элеронов. При этом ему необходимо приложить усилие порядка 80-120 фунтов (36-54 кг), чтобы преодолеть усилие предварительной затяжки пружины в механизме связи штурвалов (aileron transfer mechanism), отклонить штурвал более 12 градусов и тогда вступят в работу интерцепторы.

 

При заклинении правого штурвала или тросовой проводки интерцепторов командир имеет возможность управлять элеронами, преодолевая усилие пружины в механизме связи штурвалов.

 

В случае заклинения одного из элеронов на соответствующей качалке срезается срезная заклёпка. Оставшийся элерон продолжает отклоняться нормально.

 

Рулевой привод элеронов соединен тросовой проводкой с левой штурвальной колонкой через загрузочный механизм (aileron feel and centering unit). Данное устройство имитирует аэродинамическую нагрузку на элеронах, при работающем рулевом приводе, а также смещает положение нулевых усилий (механизм триммерного эффекта). Пользоваться механизмом триммерного эффекта элеронов можно только при отключенном автопилоте, поскольку автопилот управляет рулевым приводом напрямую, и будет пересиливать любые перемещения загрузочного механизма. Зато в момент отключения автопилота эти усилия сразу же передадутся на проводку управления, что приведет к неожидаемому кренению самолета. Для управления механизмом триммерного эффекта установлено два переключателя. Один из них определяет сторону смещения нейтрали, а второй включает питание электродвигателя. Триммирование произойдет только при нажатии на оба переключателя одновременно.

 

Для уменьшения усилий при ручном управлении (manual reversion) элероны имеют кинематические сервокомпенсаторы (tabs) и балансировочные панели (balance panel).

(см. http://aviacom.ucoz.ru/Principleflight3.doc стр.5)

 

Сервокомпенсаторы кинематически связаны с элеронами и отклоняются в противоположную отклонению элерона сторону. Это уменьшает шарнирный момент элерона и усилия на штурвале.

 

Балансировочные панели представляют собой панели соединяющие переднюю кромку элерона с задним лонжероном крыла с помощью шарнирных соединений. При отклонении элерона, например, вниз - на нижней поверхности крыла в зоне элерона возникает зона повышенного давления, а на верхней – разрежения. Этот перепад давления распространяется в зону между передней кромкой элерона и крылом и, воздействуя на балансировочную панель, уменьшает шарнирный момент элерона.

 

 

При отсутствии гидропитания механизм триммерного эффекта реального уменьшения усилий не обеспечивает. Триммировать усилия на рулевой колонке можно с помощью руля направления или, в крайнем случае, разнотягом двигателей.

 

Углы отклонения элеронов: вверх - 20°, вниз - 15°. Разница в углах отклонения вверх и вниз позволяет уменьшить вредный момент рыскания от элеронов

(см. http://aviacom.ucoz.ru/Principleflight3.doc стр.12).

 

На земле, при нейтральном колесе штурвала оба элерона отклонены вниз на 1°, задняя кромка элерона ниже поверхности крыла на 9 мм (зависание элеронов). В полёте, под действием зоны разряжения над крылом, проводка элеронов деформируется и элероны «всплывают» и становятся вровень с крылом, что уменьшает лобовое сопротивление.

 

 

Продольное управление

 

 

Управляющими поверхностями продольного управления являются: руль высоты, обеспеченный гидравлическим рулевым приводом, и стабилизатор, обеспеченный электрическим приводом. На задней кромке руля высоты установлен сервокомпесатор, предназначенный для облегчения отклонения руля пилотами при отказе гидропитания. Также руль высоты в концевой части имеет выступ («рог»), в котором размещается балансировочный груз. В весовом отношении руль высоты полностью сбалансирован.

 

На «классике» штурвальные колонки командира и второго пилота соединены между собой жестко. На “NG” при заклинении одной из штурвальных колонок вторая сохранит свою подвижность.

 

 

На рисунке изображён узел, позволяющий раздельное движение штурвалов по тангажу. На командирской стороне расположена профилированная поверхность, к которой пружинами прижимается ролик, связанный со штурвалом второго пилота. Для преодоления сопротивления пружин пилоту, на чьей стороне не заклинило проводку управления, понадобится приложить дополнительное усилие 31 фунт (14 кг). Для дальнейшего отклонения штурвала придётся преодолевать сопротивление заклинившей половины тросовой проводки. Это резко ограничит диапазон возможного отклонения штурвала и увеличит потребные усилия. Так отклонения руля высоты на 4° потребуется усилие 100 фунтов (45 кг). Хотя эти усилия больше, чем при пилотировании самолёта без гидроусилителей (manual reversion), но управляемость, достаточная для выполнения посадки, сохраняется. Усилия снимать отклонением стабилизатора.

 

Штурвалы пилотов связаны с гидравлическими приводами руля высоты с помощью тросовой проводки. Кроме пилотов на проводку управления рулём высоты воздействуют: рулевая машина автопилота (когда включена), раздвижная тяга электромеханизма Mach Trim System и при изменении положения стабилизатора происходит смещение нейтрали загружателя штурвала (feel and centering unit).

Нормальное управление стабилизатором осуществляется от переключателей на штурвалах или автопилотом. Резервное управление стабилизатором - механическое с помощью колеса управления на центральном пульте управления.

 

Управление рулем высоты

 

Две половины руля высоты механически соединены между собой с помощью трубы. Гидроприводы руля высоты питаются от гидросистем А и В. Подачей гидрожидкости к приводам управляют переключатели в кабине пилотов (Flight Control Switches).

Одной работающей гидросистемы достаточно для нормальной работы руля высоты.

В случае отказа обоих гидросистем (manual reversion) руль высоты отклоняется вручную от любого из штурвалов. Для уменьшения шарнирного момента руль высоты оснащен двумя аэродинамическими сервокомпенсаторами и шестью балансировочными панелями.

Наличие балансировочных панелей приводит к необходимости установки стабилизатора полностью на пикирование (0 units) перед обливом противообледенительной жидкостью. Такая установка предотвращает попадание слякоти и противообледенительной жидкости в воздушные полости балансировочных панелей, поскольку стабилизатор будет иметь положительный угол наклона 4° (передняя кромка выше задней).

 

 

На модификации “NG” аэродинамические сервокомпенсаторы при выпущенных закрылках и наличии давления в гидросистемах перестраиваются на антикомпенсаторы.

Принцип работы сервокомпенсатора и антикомпенсатора см. http://aviacom.ucoz.ru/Principleflight3.doc стр 5, 6

 

 

 

 

На левой половине руля высоты перестройка осуществляется по команде от FCC. Гидроцилиндр работает от гидросистемы А.

На правой половине – по сигналу датчика положения закрылков с задержкой на 10 секунд.

Гидроцилиндр работает от гидросистемы В.

На фото видно, что при руле высоты, отклонённом на пикирование, сервокомпенсатор на левой половине отклонён вверх (работает как сервокомпенсатор), а на правой половине – отклонён вниз (работает как антикомпенсатор). Это произошло потому, что была включена в работу только гидросистема В.

 

В AFM (Aircraft Flight Manual) 737-800 написано, что зафиксированы случаи вибрации сервокомпенсатора на приборной скорости более 275 узлов в диапазоне высот от 10000 до 25000 футов, при этом перед полётом производилась процедура удаления льда/противообледенения стабилизатора.

В связи с тем, что сервокомпенсатор может вызвать вибрацию проводки управления (См. Недостатки самолёта №6), то логично было бы выпустить закрылки, поскольку антикомпенсатор не способствует отклонению руля и, соответственно, не должен вызывать вибрацию. Хотя QRH в данном случае рекомендует только плавно уменьшить скорость до прекращения вибрации, не использовать интерцепторы в полёте и произвести посадку на ближайшем аэродроме.

 

Поскольку руль высоты не имеет аэродинамического триммера и в проводке управления нет механизма триммерного эффекта, то снять усилия с отклонённого штурвала невозможно. Чтобы усилия на штурвале исчезли, его нужно вернуть в нейтральное положение. При этом требуемого изменения в балансировке достигают путём перекладки стабилизатора. На всех установившихся режимах полёта независимо от высоты, скорости и тангажа штурвал всё время находится в приблизительно одном и том же нейтральном положении, которое может немного изменяться в зависимости от положения стабилизатора и работы системы MACH TRIM.

 

Нейтральное положение руля высоты относительно самолёта меняется в зависимости от положения стабилизатора. Руль высоты как бы «стремится» находиться в одной плоскости со стабилизатором. При работающем рулевом приводе руля высоты это обеспечивается за счёт смещения нейтрали загружателя штурвала, при включенном автопилоте – за счёт отслеживания положения стабилизатора датчиком автопилота и выдаче соответствующей команды на рулевой привод. При перекладке стабилизатора из положения 0 units в положение 17 units, штурвал смещается на 4,3 см на кабрирование, что соответствует перекладке руля высоты около 7°.

При положении стабилизатора 3 units, руль высоты опущен вниз на 4°.

При перекладке стабилизатора на кабрирование до 10 units, руль высоты займёт горизонтальное положение.

При угле стабилизатора 14 units, руль высоты поднимется вверх на 2,75°.

На самолетах модификации “NG” положение нейтрали руля высоты регулируется не только механически смещением нейтрали загружателя, но и электрическим сигналом от компьютера контролирующего управление самолётом FCC (flight control computer). Данный компьютер воздействует на проводку управления рулём высоты через электромеханизм системы MACH TRIM.

 

 

Функция смещения нейтрали от FCC работает только при отключенном автопилоте и выпущенных закрылках, когда пилот перекладывает стабилизатор нажатием переключателя на штурвале или меняет положение закрылков.

Положение стабилизатора то 7 до 10,5 units соответствует взлёту с передней центровкой. FCC при этом командует на смещение нейтрали руля высоты ~ 1,5° на пикирование. Стабилизатор в балансировочном положении (при нулевых усилиях на штурвале) при этом будет больше отклонён на кабрирование, что улучшает управляемость на взлёте (увеличивает запас руля высоты на кабрирование).

 

Поскольку гидравлические приводы руля высоты включены в проводку управления по необратимой схеме, то аэродинамическая нагрузка от рулей на штурвалы не передаётся. Усилия искусственно создаются с помощью загружателя штурвала (feel and centering unit) на который, воздействуют:

- механизм смещения нейтрали (точки нулевых усилий), механически связанный со стабилизатором;

- механизм системы Mach trim system;

- гидравлический имитатор аэродинамической нагрузки (elevator feel computer).

 

 

При отклонении штурвала поворачивается центрирующий кулачок, при этом подпружиненный ролик выходит из своей «ямки» на боковую поверхность кулачка. Стремясь под действием пружины вернуться обратно, он создает усилие в поводке управления, препятствующее отклонению штурвала. Кроме пружины на ролик воздействует исполнительный механизм имитатора аэродинамической нагрузки (elevator feel computer). Чем больше командное давление, тем сильнее ролик будет прижиматься к кулачку, что будет имитировать возрастание скоростного напора. Особенностью двухпоршневого цилиндра является то, что он воздействует на загружатель штурвала максимальным из двух командных давлений. Это легко понять по рисунку, поскольку между поршнями давления нет, и цилиндр будет находиться в нарисованном состоянии только при одинаковых командных давлениях. Если же одно из давлений станет больше, то цилиндр сместится в сторону большего давления, пока один из поршней не упрется в механическую преграду, исключив, таким образом, цилиндр с меньшим давлением из работы.

 

 

На вход elevator feel computer поступает скорость полета (от приемников воздушного давления, установленных на киле) и положение стабилизатора.

Под действием разности полного и статического давлений мембрана (q diaphragm) прогибается вниз, смещая золотник командного давления. Чем больше скорость, тем больше командное давление.

Изменение положения стабилизатора передается на кулачок стабилизатора, который через упругий рычаг ограничивает опускание мембраны и, соответственно, рост командного давления. Чем больше стабилизатор отклонен на кабрирование, тем меньше максимальное командное давление.

Предохранительный клапан предназначен для защиты от чрезмерного увеличения командного давления.

Таким образом гидравлическое давление из гидросистем А и В 3000 psi (210 атм.) преобразуется в соответствующее командное давление 200 – 2100 psi (от 14 до 150 атм.), воздействующее на загружатель штурвала. На NG диапазон командных давлений 180 -1400 psi.

Если, при убранных закрылках, разница в командных давлениях становится более 25%, то пилотам выдается сигнал FEEL DIFF PRESS. Эта ситуация возможна при отказе одной из гидросистем или одной из веток приемников воздушного давления. Никаких действий от экипажа не требуется, поскольку система продолжает нормально функционировать.

 

На самолётах модификации NG к каналу командного давления от гидросистемы А подключен модуль создания дополнительного давления EFSM (elevator feel shift module). Он выдаёт давление 850 psi когда включается в работу система предупреждения о приближении сваливания самолёта.

 

Система предупреждения о приближении сваливания самолёта

 

На штурвалах самолёта установлены механизмы тряски штурвала, которые обеспечивают тактильное и звуковое предупреждение пилотам о приближающемся сваливании.

Система состоит из двух независимых компьютеров с датчиками информации. Один компьютер выдаёт команду на включение механизма тряски штурвала командира, а второй – штурвала второго пилота.

 

Система включается, когда датчик AIR – GROUND на правой стойке покажет, что самолёт находится в воздухе, или скорость самолёта станет больше 160 узлов.

Система выключается, когда вышеупомянутый датчик покажет, что самолёт находится на земле, или же скорость самолёта уменьшится менее 60 узлов.

 

При расчёте момента включения механизма тряски используются четыре алгоритма:

- normal stall warning (сравнение α текущего и α включения механизма тряски)

- asymmetry stall warning (поправка на положение предкрылков)

- high thrust stall warning (поправка на тягу двигателей)

- speed floor stall warning (включение тряски независимо от угла атаки при падении скорости).

 

В первом алгоритме анализируется текущий угол отклонения закрылков (trailing edge flaps). Каждой позиции закрылков соответствует свой угол атаки включения тряски штурвала. Если текущий угол атаки превышает установленный предел, то выдаётся команда на включение тряски штурвала.

 

Второй и третий алгоритм включаются при выпущенных закрылках.

Второй алгоритм отслеживает загорание сигнализации LE FLAPS TRANSIT. Через 8 секунд после её появления (для исключения ложных срабатываний при выпуске-уборке предкрылков), выдаётся команда на первый алгоритм на понижение границы включения сигнализации. То есть компьютер считает, что сваливание начнётся на меньшем угле атаки и соответственно включит сигнализацию.

 

Третий алгоритм следит за режимом двигателей и скоростью полёта. Если N1>65%, N2>75%, то в зависимости текущих N1 и скорости полёта рассчитывается CTG (coefficient of thrust gradient) и, соответственно, выдаётся команда на первый алгоритм на понижение границы включения сигнализации. При этом команды от второго и третьего алгоритмов сравниваются и на выходе остаётся та, что больше по величине. Физический смысл третьего алгоритма – двигатели на повышенных режимах работы создают дестабилизирующий кабрирующий момент, способствующий попаданию самолёта в сваливание.

 

Четвёртый алгоритм анализирует только угол выпуска закрылков и текущую скорость полёта (таблица соответствия на рисунке). Когда скорость падает менее табличного значения, тряска штурвала включается независимо от угла атаки.

 

Информацию о текущем угле атаки система получает с датчиков угла атаки, расположенных справа и слева носовой части самолёта.

 

 

Также эти компьютеры рассчитывают и выдают на индикацию две скорости, обозначенные на линейке скоростей пилотажного индикатора. Большая из этих скоростей обозначается вершиной столбика янтарного цвета (цифра 8 на рисунке). Это минимальная скорость маневрирования (minimum maneuver speed). Она рассчитывается по текущему углу атаки и скорости самолёта. При полёте на данной скорости механизм тряски штурвала сработает при перегрузке 1.3 (см. уточняющий текст ниже). При изменении текущей нормальной перегрузки вершина янтарного столбика не перемещается по линейке скоростей.

 

 

Меньшая скорость обозначается вершиной красно-чёрного полосатого столбика и обозначает расчётную скорость начала срабатывания механизма тряски штурвала (цифра 9 на рисунке). В расчёте этой скорости участвует, в том числе, и текущая нормальная перегрузка (stick shaker speed), то есть при увеличении перегрузки красно-чёрный столбик ползёт вверх. Фактическое сваливание самолёта должно произойти на скорости меньшей, чем индицируемая скорость включения тряски штурвала.

 

Логика расчёта минимальной скорости маневрирования (вершина янтарного столбика) меняется в зависимости от положения закрылков.

При выпущенных закрылках (максимальная высота полёта 20000 футов) обеспечивается запас по перегрузке 0.3 до включения механизма тряски штурвала. Данный запас обеспечивает выполнение горизонтального разворота с креном 40° и обеспечивает «полные маневренные возможности самолёта» (full maneuver capability).

При убранных закрылках этот запас обеспечивается только на высотах ниже 10000 футов. В диапазоне высот 10000 - 20000 футов он уменьшается из-за влияния растущего числа М. Но не ниже 0.155, что соответствует горизонтальному развороту с креном 30° и обеспечивает «достаточные маневренные возможности самолёта» (adequate maneuver capability).

Выше 20000 футов вершина янтарного столбика показывает запас до начала аэродинамической тряски (low speed buffet), а не до начала тряски штурвала. Причем величину запаса можно установить предварительным программированием FMC в диапазоне 0.15 ÷ 0.65 для классики и 0.2 ÷ 0.6 для NG (по умолчанию Боинг устанавливает запас 0.3).

Чтобы узнать, какой запас установлен на конкретном самолёте нужно на земле открыть страницу INDEX зайти в MAINT открыть FMCS выбрать PERFORM FACTOR. Данный запас будет индицироваться в строке MANEUV FACTOR (он пишется с единицей, т.е. запас 0.3 обозначается 1.3)

 

На некоторых «классических» самолётах SMC (Stall Management Computer) дополнительно рассчитывает flaps up maneuvering speed (зелёный кружочек), minimum flap retraction speed (зелёная буква F), high speed buffet (дно верхнего янтарного столбика, цифра 15 на рисунке) и maximum operating speed (дно верхнего красно-чёрного столбика, цифра 14).

 

 

На самолетах модификации NG, кроме этого, рассчитывается рекомендуемая скорость для пилотирования при заходе на посадку и после взлёта (flap maneuvering speed, цифра 2 на рисунке). Данная скорость обозначается символом UP или цифрой, обозначающей угол выпуска закрылков. Эта скорость рассчитывается FMC по текущему весу самолёта и обеспечивает, как минимум, координированный разворот с креном 40 (то есть нормальную перегрузку 1.3) до срабатывания механизма тряски штурвала при полёте на небольшой высоте. При увеличении высоты данный запас может не обеспечиваться.

 

 

В нормальных условиях рекомендуемая скорость всегда будет больше минимальной скорости маневрирования, но при отказах механизации крыла может стать меньше.

 

Компьютер системы предупреждения о сваливании также рассчитывает угол тангажа, при достижении которого, будет достигнут угол атаки тряски штурвала (PLI pitch limit indicator). Данный символ индицируется на пилотажном приборе только при выпущенных закрылках.

 

Также данная система даёт команду в систему выпуска предкрылков на автоматический довыпуск выдвижных предкрылков при приближении к сваливанию (autoslat system). Команда выдаётся на угле атаки меньшем, чем угол атаки тряски штурвала. На классике данная система работает в диапазоне углов выпуска закрылков 1 – 5 градусов, а на NG – в диапазоне 1 – 25 градусов.

 

Кроме рассмотренных функций, на самолётах модификации NG предусмотрена активная помощь пилоту по выходу из сваливания. Когда компьютер системы предупреждения сваливания определяет, что самолёт находится на режиме сваливания (stall ID), то он выдаёт сигнал в систему управления самолётом (FCC), которая перекладывает стабилизатор на пикирование. Чтобы пилот не смог легко парировать данный пикирующий момент взятием штурвала на себя, включается модуль EFSM (Elevator Feel Shift Module), подающий дополнительное командное давление на загружатель штурвала. При этом градиент усилий на угол отклонения штурвала увеличивается почти в четыре раза. Условия срабатывания модуля EFSM: включился механизм тряски штурвала и после этого угол атаки увеличился ещё на 8 - 11°, а также нет запрещения для работы модуля из-за малой высоты полёта (100 футов).

 

Система улучшения устойчивости по скорости на больших числах М

(Mach Trim System)

 

Данная система является встроенной функцией цифровой системы управления самолетом (DFCS).

Система MACH TRIM обеспечивает устойчивость по скорости при числе М более 0,615. При увеличении числа М электромеханизм MACH TRIM ACTUATOR смещает нейтраль загружателя штурвала (feel and centering unit) и руль высоты автоматически отклоняется на кабрирование, компенсируя пикирующий момент от смещения аэродинамического фокуса вперед. При этом на штурвал никакие перемещения не передаются. Подключение и отключение системы происходит автоматически в функции числа М.

Система получает число М от Air Data Computer. Система двухканальная. При отказе одного канала индицируется MACH TRIM FAIL при нажатии Master Caution и гаснет после Reset. При двойном отказе система не работает и сигнал не гасится. На классике необходимо выдерживать число М не более 0.74, на NG – IAS не более 280 узлов, число М не более 0.82.

 

Управление стабилизатором

 

Стабилизатор управляется электродвигателями триммирования: один из них управляется вручную от переключателей на штурвалах, второй - от автопилота. На NG электродвигатель один, а управляется он от штурвала или автопилотом по независимым каналам.

Также обеспечена механическая связь со стабилизатором с помощью колеса управления и тросовой проводки. На случай заклинивания любого из электродвигателей предусмотрена муфта, разъединяющая проводку управления стабилизатором от электродвигателей. Чтобы сработала муфта, надо приложить усилие к колесу управления и сделать примерно пол-оборота.

Полный ход стабилизатора 0 - 17 units (-0.2 – 16.9 на NG). Он возможен только от механической системы управления.

Диапазон работы автопилота ограничен 0,25 – 14 units (0.05 – 14.5 на NG).

Управление от переключателей на штурвале еще более ограничено: 0,25 – 12,5 (0.05 – 14.5 на NG) при выпущенных закрылках и 2,5 – 12,5 (3.95 – 14.5 на NG) при убранных.

Диапазон 2 – 6,9 units (Green band) соответствует эксплуатационному диапазону центровок, соответственно 30% - 5% САХ. На NG этот диапазон 2,65 – 8,5 units, соответственно для центровок 36% - 6% САХ. При положении стабилизатора вне данного диапазона при переводе РУД на взлетный режим будет звучать прерывистый звуковой сигнал (Takeoff configuration warning).

 

 

Управление электродвигателем ручного триммирования выполняется от нажимных переключателей на штурвалах пилотов. Один из переключателей отвечает за направление триммирования, а второй включает питание электродвигателя.

Нажатие этих переключателей при подключенном автопилоте приводит к его отключению.

При отклонении штурвальной колонки от нейтрали срабатывают выключатели, прерывающие цепь управления стабилизатором в сторону противоположную отклонению. Например, при взятии штурвала на себя невозможно отклонить стабилизатор на пикирование. Чтобы отключить данное ограничение на центральном пульте есть выключатель «OVERRIDE». Его нужно использовать при заклинении проводки рулём высоты, чтобы управлять самолётом по тангажу с помощью только одного стабилизатора.

Скорость перекладки стабилизатора зависит от положения закрылков - при их выпуске увеличивается в три раза.

Автопилот управляет стабилизатором с помощью сервопривода автопилота. Скорость перекладки также зависит от положения закрылков. При выпущенных закрылках она равна скорости ручной перекладки с убранными закрылками, а при убранных – в два раза меньше.

 

При постановке самолёта на стоянку на длительный период следует стабилизатор отработать полностью на пикирование. В зимний период это связано с предотвращением затекания противообледенительной жидкости и растаявшего снега/слякоти в полости балансировочных панелей руля высоты. В остальной период это имеет смысл для предотвращения подъёма передней стойки самолёта на стоянке от порыва встречного ветра (особенно пустого, незаправленого самолёта).

Ниже приведён график зависимости силы ветра, способного опрокинуть самолёт на хвост в зависимости от положения стабилизатора, а также пунктирными линиями показана сила ветра, приводящая к смещению самолёта.

 

 

Система улучшения устойчивости по скорости на малых скоростях

(Speed Trim System)

 

Данная система является встроенной функцией цифровой системы управления самолетом (DFCS) и работает только при отключенном автопилоте.

Система управляет стабилизатором с помощью сервопривода автопилота для обеспечения устойчивости по скорости. Её срабатывание возможно вскоре после взлета или при уходе на второй круг. Условиями, способствующими срабатыванию, являются малый вес, задняя центровка и высокий режим работы двигателей.

См. ( http://aviacom.ucoz.ru/Principleflight2.doc ) стр. 17-18, 23

Система улучшения устойчивости по скорости применяется в области полетов на скоростях 90 – 250 узлов. Если компьютер улавливает изменение скорости, то система автоматически включается при выпущенных закрылках (на 400/500 независимо от закрылков), оборотах двигателей N1 более 60%. При этом должно пройти более 5 секунд после предыдущего ручного триммирования и не менее 10 секунд после отрыва от ВПП.

Принцип работы заключается в перекладывании стабилизатора в зависимости от изменения скорости самолета, таким образом, чтобы при разгоне самолет имел тенденцию к задиранию носа и наоборот. (При разгоне 90 – 250 узлов стабилизатор автоматически перекладывается на 8 градусов на кабрирование). Кроме изменений скорости компьютер учитывает обороты двигателей, вертикальную скорость и приближение к сваливанию. Чем выше режим двигателей, тем быстрее начнет срабатывать система. Чем больше вертикальная скорость набора высоты, тем больше стабилизатор отрабатывает на пикирование. При приближении к углам сваливания система автоматически отключается.

При торможении самолёта стабилизатор автоматически перекладывается на пикирование.

Система двухканальная. При отказе одного канала полет разрешается. При двойном отказе вылетать нельзя. Если двойной отказ произошел в полете, QRH не требует никаких действий, но логично было бы повысить контроль за скоростью на этапах захода на посадку и ухода на второй круг.

 

21 мая 2009 года AAIB (Air Accidents Investigation Branch) - бюро расследований происшествий на авиационном транспорте Великобритании опубликовало отчет о расследовании инцидента с Боингом 737-300 авиакомпании Thomsonfly, произошедшего в Bournemouth (Великобритания) 23 сентября 2007 года.

Согласно отчета, самолет при заходе на посадку потерял скорость до 82 узлов (20 узлов менее VREF), вышел на режим сваливания. Экипаж при выводе самолета из сваливания вывели двигатели на режим превышающий полную взлетную мощность. При этом, кабрирующий момент от двигателей был так велик, что для его парирования не хватило полной отдачи штурвальной колонки от себя и тангаж самолета увеличился до 44 градусов.

AAIB подчеркнуло в своем отчете, что в QRH (Quick Reference Handbook) не отражен тот факт, что для вывода самолета из сваливания может потребоваться использование стабилизатора для противодействия кабрирующему моменту двигателей и что эки





cyberpedia.su

Инструктаж по управлению самолетом Boeing 737

Убедиться, что своем указателе скорости тоже 80 узлов, ответ “CHECKED При достижении 80 узлов доклад “EIGHTY KNOTS
Убедиться, что достигли V1 Примерно за 5 узлов до V1 доклад “V1
Действие командира:
Одновременно скомандовать “GO” и убрать руку с РУДов.

Потянуть штурвал на себя, начать плавно поднимать нос самолета. Рекомендуемый темп увеличения тангажа 2-3 градуса в секунду. Таким образом в течении 3-4 секунд будет создан тангаж 7-9 градусов и произойдет отрыв самолета. С тем же темпом довести тангаж до 15 градусов.
По достижении скорости подъема передней опоры (VR) доклад “ROTATE
После взлета использовать авигоризонт как основной источник информации о пространственном положении самолета (не смотреть в окно в поисках горизонта). Директорные стрелки помогут выдерживать заданную траекторию самолета. Следить за скоростью и вертикальной скоростью.
Создать устойчивый набор высоты
Убедиться в устойчивом наборе высоты по стрелке вариометра и по барометрическому высотомеру. Доклад “POSITIVE RATE
Убедиться в устойчивом наборе высоты по стрелке вариометра и по барометрическому высотомеру и скомандовать “GEAR UP
Перевести рычаг управления шасси в положение UP
Изменяя тангаж самолета удерживать скорость в пределах V2+15 - V2+25 (без отказа двигателя) или V2 - V2+20 (с отказом одного двигателя).
Выше 400 фт по РВ скомандовать включение необходимого режима работы системы ведения самолета по крену или убедиться что он уже выбран
Выбрать нужный режим (LNAV или HDG SEL)
На высоте уменьшения тяги (Thrust reduction altitude):
Убедиться в ее автоматическом уменьшении,
или скомандовать “N1
По команде нажать кнопку N1 на MCP
Убедиться, что установлен режим для набора высоты
По необходимости подключить автопилот, доклад “AUTOPILOT ON, MY MCP Убедиться в правильной индикации на FMA, ответ “CHECKED
На высоте начала разгона дать команду на установку заданной скорости на значение Flaps UP speed: “SET FLAPS UP SPEED Установить на МСР Flaps UP speed

dream-aero.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *