Есть ли лазерное оружие в россии – Лучи смерти: станет ли лазер настоящим оружием

Лучи смерти: станет ли лазер настоящим оружием

30.04.2019

Первый раз лазер был продемонстрирован широкой общественности в 1960 году, и практически сразу же журналисты назвали его «лучом смерти». С тех пор разработки лазерного оружия не прекращаются ни на минуту: более полувека им занимались ученые СССР и США. Даже после окончания Холодной войны американцы не закрыли свои проекты боевых лазеров, несмотря на затрачиваемые гигантские суммы. И все бы ничего — если бы эти миллиардные вложения принесли ощутимый результат. Однако и по сей день лазерное оружие остается скорее экзотическим шоу, чем эффективным средством поражения.

При этом некоторые эксперты считают, что «доведение до ума» лазерных технологий вызовет настоящую революцию в военном деле. Едва ли пехотинцы сразу получат лазерные мечи или бластеры — но все это будет настоящий прорыв, например, в противоракетной обороне. Как бы то ни было, подобное новое оружие появится еще нескоро.

Тем не менее, разработки продолжаются. Активнее всего они идут в США. Бьются над разработкой «лучей смерти» ученые и в нашей стране, лазерное оружие России создается на основе наработок, сделанных еще в советский период. Лазерами интересуются Китай, Израиль и Индия. Участвуют в этой гонке Германия, Великобритания и Япония.

Но прежде чем говорить о преимуществах и недостатках лазерного оружия, следует разораться в сути вопроса и понять, на каких физических принципах работают лазеры.

Что такое «луч смерти»?

Лазерное оружие – это вид наступательного и оборонительного вооружения, которое в качестве поражающего элемента использует лазерный луч. Сегодня слово «лазер» прочно вошло в обиход, но мало кто знает, что на самом деле это аббревиатура, начальные буквы от словосочетания Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Ученые называют лазер оптическим квантовым генератором, способным преобразовывать различные виды энергии (электрическую, световую, химическую, тепловую) в узконаправленный пучок когерентного, монохроматического излучения.

В числе первых теоретическими обоснованием работы лазеров занимался величайший физик XX столетия Альберт Эйнштейн. Экспериментальное подтверждение возможности получения лазерного излучения были получены в конце 20-х годов.

Лазер состоит из активной (или рабочей) среды, в качестве которой может выступать газ, твердое тело или жидкость, мощного источника энергии и резонатора, обычно представляющего собой систему зеркал.

К нашему времени лазеры нашли применение в самых разных сферах науки и техники. Жизнь современного человека буквально наполнена лазерами, хотя он не всегда и догадывается об этом. Указки и системы считывания штрих-кодов в магазинах, проигрыватели компакт-дисков и приборы определения точного расстояния, голография – все это мы имеем только благодаря этому удивительному изобретению под названием «лазер». Кроме того, лазеры активно используются в промышленности (для резки, пайки, гравировки), медицине (хирургия, косметология), навигации, в метрологии и при создании сверхточной измерительной техники.

Используется лазер и в военном деле. Однако в основном его применение сводится к различным системам локации, наведения оружия и навигации, а также к лазерной связи. Были попытки (в СССР и США) создать ослепляющее лазерное оружие, которое бы выводило из строя вражескую оптику и системы прицеливания. Но настоящих «лучей смерти» военные до сих пор так и не получили. Слишком уж технически сложной оказалась задача создать лазер такой мощности, который бы мог сбивать вражеские летательные аппараты и прожигать танки. Только сейчас технологический прогресс достиг того уровня, на котором лазерные системы вооружения становятся реальностью.

Преимущества и недостатки

Несмотря на все сложности, связанные с разработкой лазерного оружия, работы в этом направлении продолжаются весьма активно, во всем мире на них ежегодно тратятся миллиарды долларов. В чем преимущества боевых лазеров по сравнению с традиционными системами вооружения?

Вот основные из них:

  • Высокая скорость и точность поражения. Луч движется со скоростью света и достигает цели практически мгновенно. Ее уничтожение происходит за считанные секунды, для переноса огня на другую цель необходим минимум времени. Излучение поражает именно ту область, на которую было направлено, не влияя на окружающие предметы.
  • Лазерный луч способен перехватывать маневрирующие цели, что выгодно отличает его от противоракет и зенитных ракет. Его скорость такова, что отклониться от него практически невозможно.
  • Лазер можно использовать не только для уничтожения, но и для ослепления цели, а также ее обнаружения. С помощью регулировки мощности можно воздействовать на цель в весьма широких пределах: от предупреждения до нанесения критических повреждений.
  • Луч лазера не имеет массы, поэтому при выстреле не нужно вносить баллистические поправки, учитывать направление и силу ветра.
  • Отсутствует отдача.
  • Выстрел из лазерной установки не сопровождается такими демаскирующими факторами, как дым, огонь или сильный звук.
  • Боекомплект лазера определяется только мощностью источника энергии. Пока лазер подключен к нему, его «патроны» никогда не кончатся. Относительно низкая стоимость одного выстрела.

Однако есть у лазеров и серьезные недостатки, которые и являются причиной того, что пока они не стоят на вооружении ни одной армии:

  • Рассеивание. Из-за рефракции лазерный луч расширяется в атмосфере и теряет фокусировку. На расстоянии в 250 км пятно лазерного луча имеет диаметр 0,3-0,5 м, что, соответственно, резко уменьшает его температуру, делая лазер неопасным для цели. Еще хуже воздействуют на луч дым, дождь или туман. Именно по этой причине создание дальнобойных лазеров пока невозможно.
  • Невозможность вести загоризонтный обстрел. Луч лазера – это идеально прямая линия, им можно стрелять только по видимой цели.
  • Испарение металла цели затеняет ее и делает лазер менее эффективным.
  • Высокий уровень энергопотребления. Как уже было сказано выше, КПД лазерных систем мал, поэтому для создания оружия, способного поразить цель, нужно очень много энергии. Этот недостаток можно назвать ключевым. Только в последние годы появилась возможность создания лазерных установок более-менее приемлемого размера и мощности.
  • От лазера легко защититься. С лазерным лучом довольно просто справиться с помощью зеркальной поверхности. Любое зеркало отражает его, независимо от уровня мощности.

Боевые лазеры: история и перспективы

Работы над созданием боевых лазеров в СССР продолжаются с начала 60-х годов. Больше всего военных интересовало применение лазеров в качестве средства противоракетной и противовоздушной обороны. Наиболее известными советскими проектами в этой области стали программы «Терра» и «Омега». Испытания советских боевых лазеров проводились на полигоне Сары-Шаган в Казахстане. Проектами руководили академики Басов и Прохоров – лауреаты Нобелевской премии за работы в области изучения лазерного излучения.

После распада СССР работы на полигоне Сары-Шаган были прекращены.

Любопытный случай произошел в 1984 году. Лазерным локатором – он являлся составной частью «Терры» — был облучен американский шаттл «Челенджер», что привело к нарушениям в работе связи и сбоям другого оборудования корабля. Члены экипажа почувствовали внезапное недомогание. Американцы быстро поняли, что причиной проблем на борту челнока является какое-то электромагнитное воздействие с территории Советского Союза, и выразили протест. Этот факт можно назвать единственным практическим применением лазера на протяжении Холодной войны.

Вообще следует отметить, что локатор установки действовал очень успешно, чего нельзя сказать о боевом лазере, который должен был сбивать вражеские боеголовки. Проблема была в недостатке мощности. Решить эту проблему так и не смогли. Ничего не вышло и с другой программой – «Омега». В 1982 году установка смогла сбить радиоуправляемую мишень, но в целом по эффективности и стоимости она значительно проигрывала обычным зенитным ракетам.

В СССР разрабатывалось ручное лазерное оружие для космонавтов, лазерные пистолеты и карабины лежали на складах до середины 90-х годов. Но на практике это несмертельное оружие так и не применялось.

С новой силой разработки советского лазерного оружия начались после объявления американцами о развертывании программы «Стратегической оборонной инициативы» (СОИ). Ее целью было создания эшелонированной системы противоракетной обороны, которая бы смогла уничтожать советские ядерные боеголовки на различных этапах их полета. Одним из основных инструментов поражения баллистических ракет и ядерных блоков должны были стать лазеры, размещенные на околоземной орбите.

Советский Союз был просто обязан ответить на этот вызов. И 15 мая 1987 года состоялся первый старт сверхтяжелой ракеты «Энергия», которая должна была вывести на орбиту боевую лазерную станцию «Скиф», предназначенную для уничтожения американских спутников наведения, входящих в систему ПРО. Сбивать их предполагалось газодинамическим лазером. Однако сразу после отделения от «Энергии» «Скиф» потерял ориентацию и упал в Тихом океане.

Были в СССР и другие программы разработки боевых лазерных систем. Одна из них – самоходный комплекс «Сжатие», работы над которым велись в НПО «Астрофизика». Его задачей было не прожигание брони танков неприятеля, а выведение из строя оптико-электронных систем вражеской техники. В 1983 года на базе самоходной установки «Шилка» был разработан еще один лазерный комплекс – «Сангвин», который предназначался для уничтожения оптических систем вертолетов. Следует отметить, что СССР как минимум не уступал США в «лазерной» гонке.

Из американских проектов наиболее известным является лазер YAL-1А, размещенный на самолете Boeing-747-400F. Реализацией этой программы занималась компания Boeing. Основной задачей системы является уничтожение баллистических ракет противника на участке их активной траектории. Лазер был успешно испытан, но его практическое применение находится под большим вопросом. Дело в том, что максимальная дальность «стрельбы» YAL-1А составляет всего 200 км (по другим источникам – 250). Boeing-747 просто не сможет подлететь на такое расстояние, если противник располагает хотя бы минимальной системой ПВО.

Следует отметить, что лазерное оружие США создается сразу несколькими крупными компаниями, каждая из которых уже имеет чем похвастать.

В 2013 году американцы испытали лазерную систему HEL MD мощностью 10 кВт. С ее помощью удалось сбить несколько минометных мин и беспилотник. В 2019 году планируется провести испытания установки HEL MD с мощностью в 50 киловатт, а к 2020 году должна появиться 100-киловаттная установка.

Еще одна страна, которая занимается активной разработкой противоракетных лазеров, — это Израиль. Ракеты типа «Кассам», применяемые палестинскими террористами, — многолетняя «головная боль» этой израильтян. Сбивать «Кассамы»с помощью противоракет очень дорого, поэтому лазер выглядит как очень неплохая альтернатива. Разработка лазерной системы ПРО Nautilus началась в конце 90-х годов, над ней совместно работали американская компания Northrop Grumman и израильские специалисты. Однако эта система так и не была принята на вооружение, Израиль вышел из этой программы. Американцы использовали накопленный опыт для создания более совершенной лазерной ПРО Skyguard, испытания которой начались в 2008 году.

Основу обеих систем – Nautilus и Skyguard – составлял химический лазер THEL мощностью 1 мВт. Американцы называют Skyguard прорывом в области лазерного оружия.

Большую заинтересованность в лазерном оружии проявляют военно-морские силы США. По замыслу американских адмиралов, лазеры могут быть использованы в качестве эффективного элемента корабельных систем ПРО и ПВО. К тому же мощность силовых установок боевых судов вполне позволяет сделать «лучи смерти» по-настоящему смертоносными. Из последних американских разработок следует упомянуть о лазерной установке MLD, разработанной компанией Northrop Grumman.

В 2011 году началась разработка новой оборонительной системы TLS, в состав которой, кроме лазера, должна входить еще и скорострельная пушка. Проектом занимаются компании Boeing и ВАЕ Systems. По замыслу разработчиков, эта система должна поражать крылатые ракеты, вертолеты, самолеты и надводные цели на дистанциях до 5 км.

Сейчас разработкой новых систем лазерного вооружения занимаются в Европе (Германия, Великобритания), в Китае и в РФ.

В настоящее время вероятность создания дальнобойного лазера для уничтожения стратегических ракет (боеголовок) или боевых летательных аппаратов на дальних расстояниях выглядит минимальной. Совсем другое дело тактический уровень.

В 2012 году компания Lockheed Martin представила широкой общественности довольно компактный комплекс ПВО ADAM, который производит уничтожение целей с помощью луча лазера. Он способен уничтожать цели (снаряды, ракеты, мины, БПЛА) на дистанциях до 5 км. В 2019 году руководство этой компании заявило о создании нового поколения тактических лазеров мощностью от 60 кВт.

Немецкая оружейная компания Rheinmetall обещает выйти на рынок с новым тактическим высокомощным лазером High Energy Laser (HEL) в 2019 году. Ранее заявлялось, что в качестве базы для этого лазера рассматриваются колесный автомобиль, колесный БТР и гусеничный БТР M113.

В 2019 году в США было объявлено о создании тактического боевого лазера GBAD OTM, основной задачей которого является защита от разведывательных и ударных БПЛА противника. В настоящее время этот комплекс проходит испытания.

В 2014 году на оружейной выставке в Сингапуре была проведена презентация израильского боевого лазерного комплекса Iron Beam. Он предназначен для поражения снарядов, ракет и мин на малых дистанциях (до 2 км). В состав комплекса входит две твердотельные лазерные установки, РЛС и пульт управления.

militaryarms.ru

Российский боевой лазерный комплекс | Армейский вестник

1 марта, выступая с Посланием Федеральному собранию, президент России Владимир Путин рассказал о шести новейших разработках отечественной оборонной промышленности. Глава государства раскрыл информацию по системам для стратегических ядерных сил и других структур армии. Один из представленных образцов, в отличие от прочих, не относится к категории стратегического ядерного оружия, но, несмотря на это, представляет большой интерес. Российская промышленность создала новый боевой лазерный комплекс.

Рассказывая о последних достижениях отечественной оборонной промышленности, В. Путин напомнил о передовых зарубежных проектах. Хорошо известно, что ряд зарубежных государств сейчас работает над перспективными образцами вооружения, использующими т.н. новые физические принципы. По мнению президента, есть все основания полагать, что и в этой сфере Россия на шаг впереди конкурентов. Во всяком случае, в нужных областях.

Президент указал на достижение существенных результатов в области лазерного вооружения. При этом речь уже идет не о теоретической проработке идей, создании проектов или начале серийного производства. Новейший российский лазерный комплекс уже поставляется в войска. Первые системы такого рода были переданы частям в прошлом году.

В. Путин не пожелал раскрывать подробности нового проекта и уточнять основные характеристики или возможности перспективного оружия. Тем не менее, он отметил, что специалисты поймут последствия появления таких систем. Наличие лазерных боевых комплексов кратно расширит возможности страны в деле обеспечения своей безопасности.

Подобно нескольким другим новейшим образцам вооружения, представленным в первый день весны, боевой лазерный комплекс пока не имеет собственного названия. В связи с этим глава государства предложил всем желающим придумать свои варианты имени для этой системы. Министерство обороны запустило специальный интернет-сервис, с помощью которого можно предложить свою версию наименования для боевого лазера и других новейших систем.

Машины комплекса на марше

На следующий день В. Путин выступал на V медиафоруме Общероссийского народного фронта в Калининграде, и в рамках этого мероприятия вновь поднял тему перспективных вооружений. Боевой лазер он назвал фантастикой, которая, однако, реализована в действительности. Президент сравнил это изделие с гиперболоидом инженера Гарина из одноименного произведения А.Н. Толстого.

Не самый долгий рассказ В. Путина о боевом лазерном комплексе проиллюстрировали видеороликом. По определенным причинам, демонстрационное видео оказалось весьма коротким и длилось всего 21 секунду. В отличие от других роликов, на этот раз показали только комплекс на марше, в ходе развертывания и на боевой позиции. Кадры применения этого оружия, с реальной съемкой или компьютерной графикой, не приводились. Впрочем, и в таком виде ролик достаточно интересен и дает определенные сведения.

Демонстрация боевого лазерного комплекса началась с кадров системы на марше. В объектив попали два седельных тягача с полуприцепами особой конфигурации. Далее, во время развертывания системы, на площадке присутствовало большее число техники. Рядом с боевой машиной, несущей лазер, находились некоторые другие образцы специальной техники с той или иной аппаратурой вспомогательного назначения.

Комплекс в процессе развертывания

Особый интерес представляют кадры из пункта управления комплексом. Зрителям показали несколько мониторов, в том числе с подписями «АРМ-1» и «АРМ-2» (вероятно, «автоматизированное рабочее место» с номерами), а также некую стойку с оборудованием. В состав средств контроля комплекса вошли клавиатура компьютерного типа, ручка управления, а также блок неясного назначения. На рабочих местах присутствуют телефонные трубки из состава систем связи.

Ролик завершается демонстрацией собственно лазерной установки. Устройство характерного облика показало работу систем горизонтальной и вертикальной наводки. Аппаратура работала с установленными или снятыми заглушками, а также с разными положениями подвижной защитной крышки. «Стрельба» по целям, однако, не показывалась.

Официальное видео от министерства обороны показывает, что в состав боевого лазерного комплекса входит несколько машин. Вероятнее всего, кроме носителя боевого модуля в комплекс входят машины управления и связи, мобильная электростанция и другие элементы. Совместная работа всех этих образцов должна обеспечивать решение поставленных боевых задач. По очевидным причинам, наибольший интерес сейчас представляет полуприцеп с лазерной установкой.

Боевой лазер и его оборудование отличаются большими размерами и массой, из-за чего их установили на полуприцепе с пятиосной ходовой частью. В центре и на корме полуприцепа располагаются четыре электрических домкрата. С их помощью, очевидно, полуприцеп должен вывешиваться и горизонтироваться перед боевой работой.

Общий вид полуприцепа в походном положении

Передняя часть полуприцепа с лазером, находящаяся над седельно-сцепным устройством тягача, оснащена кожухом средних размеров, вмещающим некие вспомогательные системы. Решетки на бортах кожуха и вентиляционные оголовки на крыше могут намекать на состав внутреннего оборудования. Основная платформа несет два корпуса-контейнера больших размеров. Спереди расположен менее крупный, вмещающий аппаратуру. Лазерная установка находится в заднем, отличающимся увеличенной длиной и более сложными внешними очертаниями.

Передняя половина заднего контейнера имеет максимально возможное сечение. Позади нее борта и крыша образуют кожух меньших размеров. Дело в том, что в корме контейнера помещена лазерная установка, а над ней находится сдвижная крыша. Агрегат П-образной конфигурации с откидными задними створками при подготовке к работе сдвигается вперед и наезжает на участок корпуса с меньшими габаритами. При этом обеспечивается свободная работа лазерной системы без ограничений по углам наведения.

В корме полуприцепа, под защитой бортов и сдвижной крыши, находится собственно лазерная установка. В ее основе лежит U-образное опорное устройство без возможности поворота вокруг вертикальной оси. На этой опоре в вертикальной плоскости качается крупный блок близкой к прямоугольной формы. На одной из его стенок имеется крепление для агрегата с целевой аппаратурой с функцией поворота. Два шарнирных соединения обеспечивают возможность наведения лазера в любом направлении.

Верхний агрегат установки получил корпус достаточно сложной формы со срезанной передней частью и цилиндрическим задним участком. На левом борту корпуса имеются два трубчатых кожуха разных размеров для аппаратуры. Передний наклонный срез корпуса прикрыт подвижной крышкой. В походном положении она лежит на бортах, в боевом – поднимается и позволяет использовать внутреннюю аппаратуру. Боковые цилиндрические кожухи комплектуются съемными крышками.

Какие-либо сведения об устройстве и внутренних агрегатах лазерной установки отсутствуют. Можно предположить, что в более крупном корпусе располагается сам лазерный излучатель, и именно его работу обеспечивает поднимающаяся крышка. Боковые трубки в таком случае должны вмещать оптико-электронные средства наблюдения, обнаружения и сопровождения. Тип лазера и его технические характеристики остаются неизвестными. В лучшем случае, их опубликуют только в будущем.

В своем Послании Федеральному собранию президент огласил только сам факт существования безымянного лазерного комплекса, и не стал раскрывать подробности. В частности, осталось неизвестным предназначение этого изделия. Остается только гадать, где, как и для чего планируется применять мобильные системы с лазерным вооружением. Уже известны определенные оценки и прогнозы, но они, ожидаемо, могут не получить подтверждения в будущем.

Лазер достаточно скромных габаритов и, соответственно, не самой высокой мощности, имеющий развитые средства наведения в двух плоскостях, может быть похож на перспективную систему противовоздушной обороны. Действительно, боевой лазер достаточной мощности может быть удобным средством противодействия пилотируемой и беспилотной авиации противника. При этом речь, скорее всего, идет не о физическом уничтожении цели, но о ее выведении из строя.

Современные боевые самолеты и БПЛА оснащаются разнообразными оптико-электронными системами, предназначенными для ведения разведки, обнаружения целей и применения вооружения. Лазерный луч достаточной мощности может повредить светочувствительные элементы оптики и вывести их из строя, как минимум, на некоторое время. Вследствие этого самолет или беспилотник потеряет часть своих функций и не сможет продолжать выполнение задания.

Изделие в боевом положении

Впрочем, ничто не мешает высказать более смелое предположение и рассмотреть боевой лазерный комплекс в качестве средства поражения техники или оружия. В теории, лазерный луч большой мощности способен передать объекту тепловую энергию и спровоцировать его разрушение. Проплавив корпус цели, лазер сможет взорвать боевую часть ракеты, вызвать возгорание топлива или во всех смыслах сжечь электронику самолета. Подобное применение лазерного оружия прорабатывалось на протяжении нескольких десятилетий, и пока нельзя исключать, что новейший проект не развивает такие идеи.

Вне зависимости от конкретного способа применения, целей и задач, лазерный комплекс боевого назначения может иметь некоторые особые преимущества, выгодно отличающие его от других систем аналогичного назначения. Так, выступая в роли средства оптико-электронного подавления, лазер оказывается безальтернативной системой. Все существующие комплексы для борьбы с тактической или беспилотной авиацией используют иные принципы. Выведению летательного аппарата из строя они «предпочитают» полное уничтожение. Очевидно, что повреждение электроники выводит самолет из боя гораздо проще и быстрее, чем полноценная атака с применением управляемых ракет или артиллерии.

Если новый комплекс оснащен достаточно мощным лазером, способным проплавлять элементы конструкции авиационной техники, то он может стать интересным конкурентом для существующих зенитных систем малой дальности. Следует напомнить, что передача тепловой энергии при помощи луча связана с некоторыми проблемами. В первую очередь, для получения требуемого результата может быть необходимо длительное воздействие на цель. Кроме того, успешному прогреву объекта могут помешать различные факторы, вплоть до погодных явлений.

Автоматизированные рабочие места расчета

Имея определенные ограничения, зенитный лазерный комплекс может быть дешевле в эксплуатации, чем его ракетный конкурент. Каждая управляемая ракета, поражающая выбранную цель, имеет достаточно высокую стоимость. Цена «выстрела» лазерной установки в сотни и тысячи раз меньше, что, впрочем, сопровождается более высокой стоимостью самого комплекса. Таким образом, для наиболее эффективного использования боевых лазерных комплексов в составе ПВО и получения наилучших результатов экономического характера требуется выработка новых методик и решений.

Одной из главных проблем на пути создателей боевых лазеров является энергоснабжение. Лазер высокой мощности нуждается в соответствующем питании. Опубликованный видеоролик показывает, что рядом с полуприцепом безымянной лазерной установки на позиции располагается вторая машина из состава комплекса. Изделия соединяются друг с другом при помощи большого числа кабелей. Это явно указывает на то, что электрогенератор не удалось разместить на одном шасси с лазером, и потому он выполнен в виде отдельного элемента комплекса.

Отдельное размещение генераторной установки уже стало поводом для самых смелых предположений. В обсуждениях комплекса была предложена версия о применении компактной ядерной энергоустановки, выдающей достаточную мощность. Косвенным подтверждением такой версии служат достижения в других областях, так же оглашенные В. Путиным. Уже испытана и проверена новая компактная атомная система достаточной мощности, пригодная для установки на малогабаритных подводных аппаратах. Впрочем, все это, скорее, является плодом смелой фантазии, а не результатом реальных работ.

Президент России уточнил, что перспективный боевой лазерный комплекс уже производится и поступает в войска. Первые системы этого типа были переданы вооруженным силам в прошлом году. Очевидно, что сборка комплексов будет продолжена, и в обозримом будущем части противовоздушной обороны (если это действительно зенитная система) освоят существенное количество такой техники. Поставки окажут заметное влияние на оборонный потенциал войск, а вместе с тем и на обороноспособность страны в целом.

К большому сожалению специалистов и любителей военной техники, в своей речи Владимир Путин не стал раскрывать самые любопытные особенности перспективного лазерного комплекса. Впрочем, общественность не осталась совсем не у дел. Как оказалось, боевой лазер и ряд других перспективных видов вооружения до сих пор не имеют названия. Военное и политическое руководство страны не стало решать этот вопрос самостоятельно и обратилось за помощью к народу. Все желающие могут придумать свои обозначения для новых вооружений, в том числе для боевого лазерного комплекса.

В свой речи, обращенной Федеральному собранию, но представляющей большой интерес для всей страны и зарубежья, президент России В. Путин описал несколько новейших образцов вооружения и техники. В этих разработках реализованы принципиально новые устройства и подходы, буквально меняющие правила игры. Одним из способов кардинального изменения ситуации стал боевой лазерный комплекс. Эта система, еще даже не получив собственного названия, уже поступает в войска и вносит определенный вклад в безопасность страны.

/Кирилл Рябов, topwar.ru/

army-news.ru

Лазерное оружие: технологии, состояние, перспективы. Часть 1

Лазерное оружие всегда вызывает множество споров. Одни считают его оружием будущего, другие категорически отрицают вероятность появления эффективных образцов такого оружия в ближайшем будущем. Люди задумывались о лазерном оружии даже до его фактического появления, вспомним классическое произведение «Гиперболоид инженера Гарина» Алексея Толстого (безусловно, в произведении указан не совсем лазер, но близкое к нему по действию и последствиям применения оружие).

Создание реального лазера в 50-х – 60-х годах XX века вновь подняло тему лазерного оружия. На протяжении десятилетий оно стало непременным атрибутом фантастических фильмов. Реальные успехи были гораздо скромнее. Да, лазеры заняли важную нишу в системах разведки и целеуказания, широко применяются в промышленности, но для использования в качестве средства поражения их мощность по-прежнему была недостаточной, а массогабаритные характеристики неприемлемыми. Как эволюционировали лазерные технологии, насколько они готовы к применению в военных целях в настоящее время?

Первый действующий лазер был создан в 1960 году. Это был импульсный твердотельный лазер на искусственном рубине. На момент создания это были самые высокие технологии. В наше время такой лазер можно собрать в домашних условиях, при этом энергия его импульса может достигать 100 Дж.

Схема первого лазера на искусственном рубине Самодельный лазер на искусственном рубине с энергией импульса 5 Дж и простреленная семью импульсами этого лазера монета, лазер построен @Laserbuilder, им планируется создание аналогичного лазера с энергией импульса до 100 Дж

Ещё более простым в реализации является азотный лазер, для его реализации не нужны сложные покупные изделия, он может работать даже на азоте, содержащемся в атмосфере. При наличии прямых рук он может быть легко собран в домашних условиях. 

Самодельный азотный лазер, изготовленный Джарродом Кинси

Процесс самостоятельной сборки и демонстрация работы азотного лазера

С момента создания первого лазера найдено огромное количество способов получения лазерного излучения. Существуют твердотельные лазеры, газовые лазеры, лазеры на красителях, лазеры на свободных электронах, волоконные лазеры, полупроводниковые и другие лазеры.

Также лазеры различаются по способу возбуждения. Например, в газовых лазерах различных конструкций, возбуждение активной среды может осуществляться оптическим излучением, разрядом электрического тока, химической реакцией, ядерной накачкой, тепловой накачкой (газодинамические лазеры, ГДЛ). Появление полупроводниковых лазеров породило лазеры типа DPSS (Diode-pumped solid-state laser – твердотельный лазер с диодной накачкой).

Различные конструкции лазеров позволяют получить на выходе излучение разных длин волн, от мягкого рентгеновского излучения, до излучения инфракрасного спектра. В разработке находятся лазеры, излучающие жесткое рентгеновское излучение и гамма-лазеры. Это позволяет подбирать лазер исходя из решаемой задачи. Относительно военного применение, это означает, к примеру, возможность выбора лазера, с излучением такой длины волны, которая минимально поглощается атмосферой планеты.

С момента разработки первого прототипа, непрерывно росла мощность, улучшались массогабаритные характеристики и коэффициент полезного действия (КПД) лазеров. Очень наглядно это заметно на примере лазерных диодов. В 90-х годах прошлого века в широкой продаже появились лазерные указки мощностью 2-5 мВт, в 2005-2010 годах уже можно было приобрести лазерную указку 200-300 мВт, сейчас, в 2019 году, в продаже есть лазерные указки с оптической мощностью 7 Вт. В России в открытой продаже есть модули инфракрасных лазерных диодов с оптоволоконным выходом, оптической мощностью 350 Вт.

Лазерная указка с оптической мощностью 7 Вт, длина волны 445 нм

Темпы роста мощности лазерных диодов сравнимы со скоростью роста вычислительной мощностью процессоров, в соответствии с законом Мура. Безусловно лазерные диоды не пригодны для создания боевых лазеров, но они в свою очередь используются для накачки эффективных твердотельных и волоконных лазеров. Для лазерных диодов КПД преобразования электрической энергии в оптическую может составлять свыше 50%, теоретически можно получить КПД и свыше 80%. Высокий КПД не только снижает требования к источнику питания, но и упрощает охлаждение лазерного оборудования.

Важным элементом лазера является система фокусировки луча – чем меньше площадь пятна на цели, тем выше удельная мощность, позволяющая нанести повреждение. Прогресс в создании сложных оптических систем и появление новых высокотемпературных оптических материалов позволяет создавать высокоэффективные системы фокусировки. В систему фокусировки и наведения американского экспериментального боевого лазера HEL входит 127 зеркал, линз и светофильтров.

Ещё одним важным компонентом, обеспечивающим возможность создания лазерного оружия, является разработка систем наведения и удержания луча на цели. Чтобы поражать цели «мгновенным» выстрелом, за доли секунды, нужны гигаваттные мощности, но создание таких лазеров и источников питания для них на мобильном шасси дело отдалённого будущего. Соответственно, для уничтожения целей лазерами мощностью сотни киловатт – десятки мегаватт, необходимо удержание пятна лазерного излучения на цели некоторое время (от нескольких секунд до нескольких десятков секунд). Для этого необходимы высокоточные и высокоскоростные приводы, способные осуществлять слежение лучом лазера за целью, по данным системы наведения.

При стрельбе на большие дальности система наведения должна компенсировать искажения, вносимые атмосферой, для чего в системе наведения могут применяться несколько лазеров различного назначения, обеспечивающих точное наведение основного «боевого» лазера на цель.

Какие лазеры получили приоритетное развитие в сфере вооружений? В связи с отсутствием мощных источников оптической накачки таковыми стали в первую очередь газодинамические и химические лазеры

В конце XX века общественное мнение всколыхнула американская программа Стратегической оборонной инициативы (СОИ). В рамках этой программы предполагалось развёртывание лазерного оружия на земле и в космосе для поражения советских межконтинентальных баллистических ракет (МБР). Для размещения на орбите предполагалось использовать лазеры с ядерной накачкой, излучающие в рентгеновском диапазоне или химические лазеры мощностью до 20 мегаватт.

Программа СОИ столкнулась с многочисленными техническими трудностями и была закрыта. В тоже время некоторые проводимые в рамках программы исследования позволили получить достаточно мощные лазеры. В 1985 году лазер на фториде дейтерия с выходной мощностью 2,2 мегаватта разрушил закреплённую в 1 километре от лазера жидкостную баллистическую ракету. В результате 12-секундного облучения стенки корпуса ракеты потеряли прочность и были разрушены внутренним давлением.

В СССР также велись разработки боевых лазеров. В 80-е годы XX века велись работы по созданию орбитальной платформы «Скиф» с газодинамическим лазером мощностью 100 кВт. Массогабаритный макет «Скиф-ДМ» (космический аппарат «Полюс») был выведен на орбиту Земли в 1987 году, но из-за ряда ошибок не вышел на расчётную орбиту и по баллистической траектории был затоплен в Тихом океане. Развал СССР поставил крест на этом и аналогичных проектах.

Космический аппарат «Полюс» («Скиф-ДМ») на сверхтяжёлой ракете-носителе «Энергия»

Масштабные исследования лазерного оружия проводились в СССР в рамках программы «Терра». Программа зональной системы противоракетной и противокосмической обороны с лучевым поражающим элементом на основе лазерного оружия высокой мощности «Терра» реализовывалась с 1965 г. по 1992 г. По открытым данным, в рамках данной программы прорабатывались газодинамические лазеры, твердотельные лазеры, взрывные иодные фотодиссоционные и другие типы лазеров. 

Лазеры АЖ-4Т и АЖ-5Т из состава комплекса «Терра-3»

Также в СССР с середины 70-х годов XX века разрабатывался лазерный комплекс воздушного базирования А-60 на базе самолёта Ил-76МД. Изначально комплекс предназначался для борьбы с автоматическими дрейфующими аэростатами. В качестве вооружения должен был быть установлен непрерывный газодинамический СО-лазер мегаваттного класса разработки КБ «Химавтоматики» (КБХА). 

В рамках испытаний было создано семейство стендовых образцов ГДЛ с мощностью излучения от 10 до 600 кВт. Можно предположить, что на момент испытаний комплекса А-60 на нём был установлен лазер мощностью 100 кВт.

Было выполнено несколько десятков полетов с испытанием лазерной установки по стратосферному аэростату, находящемуся на высоте 30-40 км и по мишени Ла-17. В части источников указывается на то, что комплекс с самолетом А-60 создавался в качестве авиационного лазерного компонента ПРО по программе «Терра-3». 

Лазерный комплекс воздушного базирования А-60

В феврале 2010 г. в СМИ прошло сообщение о возобновлении работ по лазерному оружию воздушного базирования на платформе Ил-76МД-90А с двигателями ПС-90А-76. Концерн ВКО «Алмаз-Антей», ТАНТК имени Г.М. Бериева и предприятие «Химпромавтоматика» в Воронеже получили задание на создание авиационного комплекса с «лазером, способным прожигать корпуса самолетов, спутников и баллистических ракет».

Самолет Ил-76МД-90А, переоборудованный для этой цели, в октябре 2014 года совершил первый полет и 24 ноября 2014 г. прибыл в Таганрог для установки лазерного комплекса. Доработка машины и ее наземная отработка продолжались два года, и 4 октября 2016 г. в СМИ прошло сообщение о начале летных испытаний преемника А-60. Как следует из слов заместителя министра обороны Российской Федерации Юрия Борисова, «продолжаются летные эксперименты, результаты которых подтверждают правильность принятых решений».

Какие типы лазеров наиболее перспективны для применения в военных целях в настоящее время? При всех достоинствах газодинамических и химических лазеров, у них есть существенные недостатки: необходимость в расходных компонентах, инерция запуска (по некоторым данным до одной минуты), значительное тепловыделение, большие габариты, выход отработанных компонентов активной среды. Такие лазеры могут быть размещены только на крупных носителях.

В настоящий момент наибольшие перспективы имеют твердотельные и волоконные лазеры, для работы которых необходимо лишь обеспечить их электроэнергией достаточной мощности. Военно-морские силы США активно прорабатывают технологию лазера на свободных электронах. К важным преимуществам волоконных лазеров можно отнести их масштабируемость, т.е. возможность объединять несколько модулей для получения большей мощности. Важна и обратная масштабируемость, если создан твердотельный лазер мощностью 300 кВт, то наверняка его основе может быть создан менее габаритный лазер мощностью, например, 30 кВт.

Какая ситуация с волоконными и твердотельными лазерами в России? Наука СССР в части разработки и создания лазеров была самой передовой в мире. К сожалению развал СССР изменил всё. Одна из крупнейших в мире компаний по разработке и производству волоконных лазеров IPG Photonics основана выходцем из России В. П. Гапонцевым на базе российской компании НТО «ИРЭ-Полюс».

В настоящий момент головная компания IPG Photonics зарегистрирована в США. Несмотря на то, что одна из крупнейших производственных площадок IPG Photonics расположена в России (Фрязино, Московская область), компания действует в рамках законодательства США и её лазеры не могут применяться в вооружённых силах РФ, в том числе компания должна выполнять наложенные на Россию санкции.

Вместе с тем возможности волоконных лазеров, производимых IPG Photonics, чрезвычайно высоки. Волоконные лазеры непрерывного излучения высокой мощности компании IPG обладают диапазоном мощности от 1 кВт до 500 кВт, а также широким спектром длин волн, КПД преобразования электрической энергии в оптическую доходит до 50 %. Параметры расходимости волоконных лазеров IPG намного превосходят другие лазеры большой мощности. 

Волоконный лазер YLS мощностью 100 кВт производства IPG Photonics, по запросу доступны уровни мощности до 500 кВт

Есть ли в России другие разработчики и производители современных мощных волоконных и твердотельных лазеров? Если судить по коммерческим образцам, то нет.

Отечественный производитель в промышленном сегменте предлагает газовые лазеры мощностью максимум десятки кВт. Например, компания «Лазерные системы» в 2001 году представила кислородно-йодный лазер мощностью 10 кВт с химической эффективностью, превышающей 32%, являющийся наиболее перспективным компактным автономным источником мощного лазерного излучения этого типа. Теоретически кислородно-йодные лазеры могут достигать мощности до одного мегаватта.

Вместе с тем нельзя полностью исключать то, что отечественным учёным удалось совершить прорыв в каком-либо другом направлении создания мощных лазеров, основанный на глубоком понимании физики лазерных процессов.

В 2018 году президент России Владимир Путин анонсировал лазерный комплекс «Пересвет», предназначенный для решения задач противоракетной обороны и поражения орбитальных аппаратов противника. Данные о комплексе «Пересвет» засекречены, включая тип используемого лазера (лазеров?) и оптическую мощность.

Можно предположить, что наиболее вероятным кандидатом для установки в этот комплекс является газодинамический лазер, потомок лазера, разрабатывающегося для программы А-60. В этом случае оптическая мощность лазера комплекса «Пересвет» может составлять 200-400 киловатт, в оптимистичном сценарии до 1 мегаватта. В качестве другого кандидата можно рассмотреть ранее упомянутый кислородно-йодный лазер. 

Если исходить из этого, то со стороны кабины основной машины комплекса «Пересвет» предположительно последовательно расположены – дизельный или бензиновый генератор электрического тока, компрессор, отсек хранения химических компонент, лазер с системой охлаждения, система наведения лазерного луча. Нигде не видно РЛС или ОЛС обнаружения целей, что предполагает внешнее целеуказание.

Лазерный комплекс «Пересвет»

В любом случае эти предположения могут оказаться ложными, как в связи с возможностью создания отечественными разработчиками принципиально новых лазеров, так и в связи с отсутствием достоверной информации по оптической мощности комплекса «Пересвет». В частности, в печати проскакивала информация о наличии в составе комплекса «Пересвет» малогабаритного ядерного реактора, в качестве источника энергии. Если это действительно так, то конфигурация комплекса и возможные характеристики могут быть совершенно иными.

Какой мощности нужен лазер, чтобы его можно было эффективно применять в военных целях как средство поражения? Во многом это зависит от предполагаемой дальности применения и характера поражаемых целей, а также способа их поражения.

В составе комплекса бортовой самозащиты «Витебск» присутствует станция активных помех Л-370-3С. Она осуществляет противодействие подлетающим ракетам противника с тепловой головкой самонаведения путём ослепления инфракрасным лазерным излучением. С учётом габаритов станции активных помех Л-370-3С, мощность лазерного излучателя составляет максимум несколько десятков ватт. Этого вряд ли достаточно для уничтожения тепловой головки самонаведения ракеты, но вполне достаточно для временного ослепления.

Станция активных помех Л-370-3С

В ходе испытаний комплекса А-60 с лазером мощностью 100 кВт поражались мишени Л-17, представляющие аналог реактивного самолёта. Дальность поражения неизвестна, можно предположить, что она составляла порядка 5-10 км.

Примеры испытаний зарубежных лазерных комплексов:

В ходе испытаний американского воздушного лазерного комплекса Boeing YAL-1 были уничтожены баллистические ракеты-мишени. Одна ракета-мишень с жидкостным ракетным двигателем, вторая твердотопливная, дальность стрельбы на испытаниях составила порядка 100 км.

На испытательном полигоне в Шробенхаузене компанией Rheinmetall были проведены испытания лазерной установки мощностью 20 кВт, уничтожающей беспилотный летательный аппарат (БПЛА) на расстоянии в 500 метров за 3,39 секунды.

Боевая бронированная машина Армии США «Страйкер», оснащенная мобильным высокоэнергетическим лазером (Mobile High-Energy Laser, MEHEL) мощностью 5 кВт, поразила небольшой БЛА на полигоне Графенвер в Германии (земля Бавария)

В ходе более 100 испытаний израильская лазерная система ПРО «Керен Барзель» в апреле 2014 г. система поразила 90% целей (мины, снаряды, БПЛА) показала работоспособность (Proof Of Concept), было проведено более 100 испытаний. Мощность применяемого лазера составляет несколько десятков киловатт.

Компания «Боинг» совместно с Армией США провели испытания перспективного боевого лазера HEL MD. Несмотря на плохую погоду – сильный ветер, дождь и туман – 10-киловаттная установка успешно поразила несколько воздушных целей на авиабазе Эглин во Флориде».

Предыдущее испытание комплекса проводились в 2013 г. на полигоне Уайт-Сэндз, штат Нью-Мексико. Тогда лазер поразил более 90 миномётных снарядов, и несколько БПЛА. В общей сложности за два испытания HEL MD поразил 150 воздушных целей, включая 60-миллиметровые миномётные снаряды и БЛА. В планах компании – увеличение мощности комплекса до 50-60 квт и усовершенствование системы энергообеспечения лазерной установки.

Боевой лазер HEL MD

Испытания боевого лазера HEL MD

Исходя из изложенного, можно предположить:

— для поражения малых БПЛА на дальности 1-5 км необходим лазер мощностью 2-5 кВт;

— для поражения неуправляемых мин, снарядов, и высокоточных боеприпасов на дальности 5-10 км необходим лазер мощностью 20-100 кВт;

— для поражения целей типа самолёт или ракета на дальности 100-500 км необходим лазер мощностью 1-10 МВт.

Лазеры указанных мощностей или уже существуют, или будут созданы в обозримой перспективе. Какие образцы лазерного вооружения в недалёком будущем могут использоваться военно-воздушными силами, наземными войсками и флотом, рассмотрим в продолжении настоящей статьи.

/Андрей Митрофанов, topwar.ru/

army-news.ru

технологии, история, состояние, перспективы. Часть 1 » Военное обозрение

Лазерное оружие всегда вызывает множество споров. Одни считают его оружием будущего, другие категорически отрицают вероятность появления эффективных образцов такого оружия в ближайшем будущем. Люди задумывались о лазерном оружии даже до его фактического появления, вспомним классическое произведение «Гиперболоид инженера Гарина» Алексея Толстого (безусловно, в произведении указан не совсем лазер, но близкое к нему по действию и последствиям применения оружие).

Создание реального лазера в 50-х – 60-х годах XX века вновь подняло тему лазерного оружия. На протяжении десятилетий оно стало непременным атрибутом фантастических фильмов. Реальные успехи были гораздо скромнее. Да, лазеры заняли важную нишу в системах разведки и целеуказания, широко применяются в промышленности, но для использования в качестве средства поражения их мощность по-прежнему была недостаточной, а массогабаритные характеристики неприемлемыми. Как эволюционировали лазерные технологии, насколько они готовы к применению в военных целях в настоящее время?


Первый действующий лазер был создан в 1960 году. Это был импульсный твердотельный лазер на искусственном рубине. На момент создания это были самые высокие технологии. В наше время такой лазер можно собрать в домашних условиях, при этом энергия его импульса может достигать 100 Дж.

Схема первого лазера на искусственном рубине

Самодельный лазер на искусственном рубине с энергией импульса 5 Дж и простреленная семью импульсами этого лазера монета, лазер построен @Laserbuilder, им планируется создание аналогичного лазера с энергией импульса до 100 Дж

Ещё более простым в реализации является азотный лазер, для его реализации не нужны сложные покупные изделия, он может работать даже на азоте, содержащемся в атмосфере. При наличии прямых рук он может быть легко собран в домашних условиях.

Самодельный азотный лазер, изготовленный Джарродом Кинси


Процесс самостоятельной сборки и демонстрация работы азотного лазера

С момента создания первого лазера найдено огромное количество способов получения лазерного излучения. Существуют твердотельные лазеры, газовые лазеры, лазеры на красителях, лазеры на свободных электронах, волоконные лазеры, полупроводниковые и другие лазеры. Также лазеры различаются по способу возбуждения. Например, в газовых лазерах различных конструкций, возбуждение активной среды может осуществляться оптическим излучением, разрядом электрического тока, химической реакцией, ядерной накачкой, тепловой накачкой (газодинамические лазеры, ГДЛ). Появление полупроводниковых лазеров породило лазеры типа DPSS (Diode-pumped solid-state laser – твердотельный лазер с диодной накачкой).

Различные конструкции лазеров позволяют получить на выходе излучение разных длин волн, от мягкого рентгеновского излучения, до излучения инфракрасного спектра. В разработке находятся лазеры, излучающие жесткое рентгеновское излучение и гамма-лазеры. Это позволяет подбирать лазер исходя из решаемой задачи. Относительно военного применение, это означает, к примеру, возможность выбора лазера, с излучением такой длины волны, которая минимально поглощается атмосферой планеты.

С момента разработки первого прототипа, непрерывно росла мощность, улучшались массогабаритные характеристики и коэффициент полезного действия (КПД) лазеров. Очень наглядно это заметно на примере лазерных диодов. В 90-х годах прошлого века в широкой продаже появились лазерные указки мощностью 2-5 мВт, в 2005-2010 годах уже можно было приобрести лазерную указку 200-300 мВт, сейчас, в 2019 году, в продаже есть лазерные указки с оптической мощностью 7 Вт. В России в открытой продаже есть модули инфракрасных лазерных диодов с оптоволоконным выходом, оптической мощностью 350 Вт.

Лазерная указка с оптической мощностью 7 Вт, длина волны 445 нм


Темпы роста мощности лазерных диодов сравнимы со скоростью роста вычислительной мощностью процессоров, в соответствии с законом Мура. Безусловно лазерные диоды не пригодны для создания боевых лазеров, но они в свою очередь используются для накачки эффективных твердотельных и волоконных лазеров. Для лазерных диодов КПД преобразования электрической энергии в оптическую может составлять свыше 50%, теоретически можно получить КПД и свыше 80%. Высокий КПД не только снижает требования к источнику питания, но и упрощает охлаждение лазерного оборудования.
Важным элементом лазера является система фокусировки луча – чем меньше площадь пятна на цели, тем выше удельная мощность, позволяющая нанести повреждение. Прогресс в создании сложных оптических систем и появление новых высокотемпературных оптических материалов позволяет создавать высокоэффективные системы фокусировки. В систему фокусировки и наведения американского экспериментального боевого лазера HEL входит 127 зеркал, линз и светофильтров.

Ещё одним важным компонентом, обеспечивающим возможность создания лазерного оружия, является разработка систем наведения и удержания луча на цели. Чтобы поражать цели «мгновенным» выстрелом, за доли секунды, нужны, гигаваттные мощности, но создание таких лазеров и источников питания для них на мобильном шасси дело отдалённого будущего. Соответственно, для уничтожения целей лазерами мощностью сотни киловатт – десятки мегаватт, необходимо удержание пятна лазерного излучения на цели некоторое время (от нескольких секунд до нескольких десятков секунд). Для этого необходимы высокоточные и высокоскоростные приводы, способные осуществлять слежение лучом лазера за целью, по данным системы наведения.

При стрельбе на большие дальности система наведения должна компенсировать искажения, вносимые атмосферой, для чего в системе наведения могут применяться несколько лазеров различного назначения, обеспечивающих точное наведение основного «боевого» лазера на цель.

Какие лазеры получили приоритетное развитие в сфере вооружений? В связи с отсутствием мощных источников оптической накачки таковыми стали в первую очередь газодинамические и химические лазеры.

В конце XX века общественное мнение всколыхнула американская программа Стратегической оборонной инициативы (СОИ). В рамках этой программы предполагалось развёртывание лазерного оружия на земле и в космосе для поражения советских межконтинентальных баллистических ракет (МБР). Для размещения на орбите предполагалось использовать лазеры с ядерной накачкой, излучающие в рентгеновском диапазоне или химические лазеры мощностью до 20 мегаватт.

Программа СОИ столкнулась с многочисленными техническими трудностями и была закрыта. В тоже время некоторые проводимые в рамках программы исследования позволили получить достаточно мощные лазеры. В 1985 году лазер на фториде дейтерия с выходной мощностью 2,2 мегаватта разрушил закреплённую в 1 километре от лазера жидкостную баллистическую ракету. В результате 12-секундного облучения стенки корпуса ракеты потеряли прочность и были разрушены внутренним давлением.

В СССР также велись разработки боевых лазеров. В восьмидесятые годы XX века велись работы по созданию орбитальной платформы «Скиф» с газодинамическим лазером мощностью 100 кВт. Массогабаритный макет «Скиф-ДМ» (Космический аппарат «Полюс») был выведен на орбиту Земли в 1987 году, но из-за ряда ошибок не вышел на расчётную орбиту и по баллистической траектории был затоплен в Тихом океане. Развал СССР поставил крест на этом и аналогичных проектах.

Космический аппарат «Полюс» («Скиф-ДМ») на сверхтяжёлой ракете-носителе «Энергия»

Масштабные исследования лазерного оружия проводились в СССР в рамках программы «Терра». Программа зональной системы противоракетной и противокосмической обороны с лучевым поражающим элементом на основе лазерного оружия высокой мощности «Терра» реализовывалась с 1965 г. по 1992 г. По открытым данным, в рамках данной программы прорабатывались газодинамические лазеры, твердотельные лазеры, взрывные иодные фотодиссоционные и другие типы лазеров.

Лазеры АЖ-4Т и АЖ-5Т из состава комплекса «Терра-3»

Также в СССР с середины 70-х годов XX века разрабатывался лазерный комплекс воздушного базирования А-60 на базе самолёта Ил-76МД. Изначально комплекс предназначался для борьбы с автоматическими дрейфующими аэростатами. В качестве вооружения должен был быть установлен непрерывный газодинамический СО-лазер мегаваттного класса разработки КБ «Химавтоматики» (КБХА).

В рамках испытаний было создано семейство стендовых образцов ГДЛ с мощностью излучения от 10 до 600 кВт. Можно предположить, что на момент испытаний комплекса А-60 на нём был установлен лазер мощностью 100 кВт.

Было выполнено несколько десятков полетов с испытанием лазерной установки по стратосферному аэростату, находящемуся на высоте 30-40 км и по мишени Ла-17. В части источников указывается на то, что комплекс с самолетом А-60 создавался в качестве авиационного лазерного компонента ПРО по программе «Терра-3».

Лазерный комплекс воздушного базирования А-60

В феврале 2010 г. в СМИ прошло сообщение о возобновлении работ по лазерному оружию воздушного базирования на платформе Ил-76МД-90А с двигателями ПС-90А-76. Концерн ВКО «Алмаз-Антей», ТАНТК имени Г.М. Бериева и предприятие «Химпромавтоматика» в Воронеже получили задание на создание авиационного комплекса с «лазером, способным прожигать корпуса самолетов, спутников и баллистических ракет». Самолет Ил-76МД-90А, переоборудованный для этой цели, в октябре 2014 года совершил первый полет и 24 ноября 2014 г. прибыл в Таганрог для установки лазерного комплекса. Доработка машины и ее наземная отработка продолжались два года, и 4 октября 2016 г. в СМИ прошло сообщение о начале летных испытаний преемника А-60. Как следует из слов заместителя министра обороны Российской Федерации Юрия Борисова, «продолжаются летные эксперименты, результаты которых подтверждают правильность принятых решений».

Какие типы лазеров наиболее перспективны для применения в военных целях в настоящее время? При всех достоинствах газодинамических и химических лазеров, у них есть существенные недостатки: необходимость в расходных компонентах, инерция запуска (по некоторым данным до одной минуты), значительное тепловыделение, большие габариты, выход отработанных компонентов активной среды. Такие лазеры могут быть размещены только на крупных носителях.

В настоящий момент наибольшие перспективы имеют твердотельные и волоконные лазеры, для работы которых необходимо лишь обеспечить их электроэнергией достаточной мощности. Военно-морские силы США активно прорабатывают технологию лазера на свободных электронах. К важным преимуществам волоконных лазеров можно отнести их масштабируемость, т.е. возможность объединять несколько модулей для получения большей мощности. Важна и обратная масштабируемость, если создан твердотельный лазер мощностью 300 кВт, то наверняка его основе может быть создан менее габаритный лазер мощностью, например, 30 кВт.

Какая ситуация с волоконными и твердотельными лазерами в России? Наука СССР в части разработки и создания лазеров была самой передовой в мире. К сожалению развал СССР изменил всё. Одна из крупнейших в мире компаний по разработке и производству волоконных лазеров IPG Photonics основана выходцем из России В. П. Гапонцевым на базе российской компании НТО «ИРЭ-Полюс». В настоящий момент головная компания IPG Photonics зарегистрирована в США. Несмотря на то, что одна из крупнейших производственных площадок IPG Photonics расположена в России (Фрязино, Московская область), компания действует в рамках законодательства США и её лазеры не могут применяться в вооружённых силах РФ, в том числе компания должна выполнять наложенные на Россию санкции.

Вместе с тем возможности волоконных лазеров, производимых IPG Photonics, чрезвычайно высоки. Волоконные лазеры непрерывного излучения высокой мощности компании IPG обладают диапазоном мощности от 1 кВт до 500 кВт, а также широким спектром длин волн, КПД преобразования электрической энергии в оптическую доходит до 50 %. Параметры расходимости волоконных лазеров IPG намного превосходят другие лазеры большой мощности.

Волоконный лазер YLS мощностью 100 кВт производства IPG Photonics, по запросу доступны уровни мощности до 500 кВт

Есть ли в России другие разработчики и производители современных мощных волоконных и твердотельных лазеров? Если судить по коммерческим образцам, то нет.

Отечественный производитель в промышленном сегменте предлагает газовые лазеры мощностью максимум десятки кВт. Например, компания «Лазерные системы» в 2001 году представила кислородно-йодный лазер мощностью 10 кВт с химической эффективностью, превышающей 32%, являющийся наиболее перспективным компактным автономным источником мощного лазерного излучения этого типа. Теоретически кислородно-йодные лазеры могут достигать мощности до одного мегаватта.

Вместе с тем нельзя полностью исключать то, что отечественным учёным удалось совершить прорыв в каком-либо другом направлении создания мощных лазеров, основанный на глубоком понимании физики лазерных процессов.

В 2018 году президент России Владимир Путин анонсировал лазерный комплекс «Пересвет», предназначенный для решения задач противоракетной обороны и поражения орбитальных аппаратов противника. Данные о комплексе «Пересвет» засекречены, включая тип используемого лазера (лазеров?) и оптическую мощность.

Можно предположить, что наиболее вероятным кандидатом для установки в этот комплекс является газодинамический лазер, потомок лазера, разрабатывающегося для программы А-60. В этом случае оптическая мощность лазера комплекса «Пересвет» может составлять 200-400 киловатт, в оптимистичном сценарии до 1 мегаватта. В качестве другого кандидата можно рассмотреть ранее упомянутый кислородно-йодный лазер.

Если исходить из этого, то со стороны кабины основной машины комплекса «Пересвет» предположительно последовательно расположены – дизельный или бензиновый генератор электрического тока, компрессор, отсек хранения химических компонент, лазер с системой охлаждения, система наведения лазерного луча. Нигде не видно РЛС или ОЛС обнаружения целей, что предполагает внешнее целеуказание.

Лазерный комплекс «Пересвет»

В любом случае эти предположения могут оказаться ложными, как в связи с возможностью создания отечественными разработчиками принципиально новых лазеров, так и в связи с отсутствием достоверной информации по оптической мощности комплекса «Пересвет». В частности, в печати проскакивала информация о наличии в составе комплекса «Пересвет» малогабаритного ядерного реактора, в качестве источника энергии. Если это действительно так, то конфигурация комплекса и возможные характеристики могут быть совершенно иными.

Какой мощности нужен лазер, чтобы его можно было эффективно применять в военных целях как средство поражения? Во многом это зависит от предполагаемой дальности применения и характера поражаемых целей, а также способа их поражения.

В составе комплекса бортовой самозащиты «Витебск» присутствует станция активных помех Л-370-3С. Она осуществляет противодействие подлетающим ракетам противника с тепловой головкой самонаведения путём ослепления инфракрасным лазерным излучением. С учётом габаритов станции активных помех Л-370-3С, мощность лазерного излучателя составляет максимум несколько десятков ватт. Этого вряд ли достаточно для уничтожения тепловой головки самонаведения ракеты, но вполне достаточно для временного ослепления.

Станция активных помех Л-370-3С

В ходе испытаний комплекса А-60 с лазером мощностью 100 кВт поражались мишени Л-17, представляющие аналог реактивного самолёта. Дальность поражения неизвестна, можно предположить, что она составляла порядка 5-10 км.

Примеры испытаний зарубежных лазерных комплексов:

В ходе испытаний американского воздушного лазерного комплекса Boeing YAL-1 были уничтожены баллистические ракеты-мишени. Одна ракета-мишень с жидкостным ракетным двигателем, вторая твердотопливная, дальность стрельбы на испытаниях составила порядка 100 км.

На испытательном полигоне в Шробенхаузене компанией Rheinmetall были проведены испытания лазерной установки мощностью 20 кВт, уничтожающей беспилотный летательный аппарат (БПЛА) на расстоянии в 500 метров за 3,39 секунды.

Боевая бронированная машина Армии США «Страйкер», оснащенная мобильным высокоэнергетическим лазером (Mobile High-Energy Laser, MEHEL) мощностью 5 кВт, поразила небольшой БЛА на полигоне Графенвер в Германии (земля Бавария)

В ходе более 100 испытаний израильская лазерная система ПРО «Керен Барзель» в апреле 2014 г. система поразила 90% целей (мины, снаряды, БПЛА) показала работоспособность (Proof Of Concept), было проведено более 100 испытаний. Мощность применяемого лазера составляет несколько десятков киловатт.

Компания «Боинг» совместно с Армией США провели испытания перспективного боевого лазера HEL MD. Несмотря на плохую погоду – сильный ветер, дождь и туман – 10-киловаттная установка успешно поразила несколько воздушных целей на авиабазе Эглин во Флориде».

Предыдущее испытание комплекса проводились в 2013 г. на полигоне Уайт-Сэндз, штат Нью-Мексико. Тогда лазер поразил более 90 миномётных снарядов, и несколько БПЛА. В общей сложности за два испытания HEL MD поразил 150 воздушных целей, включая 60-миллиметровые миномётные снаряды и БЛА. В планах компании – увеличение мощности комплекса до 50-60 квт и усовершенствование системы энергообеспечения лазерной установки.

Боевой лазер HEL MD

[

Испытания боевого лазера HEL MD

Исходя из изложенного, можно предположить:

— для поражения малых БПЛА на дальности 1-5 километров необходим лазер мощностью 2-5 кВт;

— для поражения неуправляемых мин, снарядов, и высокоточных боеприпасов на дальности 5-10 километров необходим лазер мощностью 20-100 кВт;

— для поражения целей типа самолёт или ракета на дальности 100-500 км необходим лазер мощностью 1-10 МВт.

Лазеры указанных мощностей или уже существуют, или будут созданы в обозримой перспективе. Какие образцы лазерного вооружения в недалёком будущем могут использоваться военно-воздушными силами, наземными войсками и флотом, рассмотрим в продолжении настоящей статьи.

topwar.ru

Лазерное оружие: чем Россия ответит Америке?

Далеко ли продвинулись отечественные системы со времен СССР?

Военно-морские силы США стали использовать корабли, оснащенные лазерным оружием. Один из них продемонстрировал свои возможности в Персидском заливе — сбил с помощью лазерной пушки беспилотный летательный аппарат. Речь идет именно о полноценном оружии, а не экспериментальном образце, уточняет CNN, чей корреспондент находился на борту судна.

Боевая лазерная система (Laser Weapons System) была установлена на борту десантного транспортного корабля USS Ponce. По словам его командира Кристофера Уэллза, она универсальна, в отличие от традиционных вооружений, используемых против воздушных, либо надводных, либо сухопутных целей.

Лазерный луч, испускаемый установкой, невидим для постороннего наблюдателя, абсолютно беззвучен и поражает цель практически мгновенно, так как движется со скоростью света. «Побочный ущерб сводится к минимуму. Мне не надо беспокоиться о боеприпасах, которые пролетят мимо цели и могут поразить то, что я не хотел бы поражать», — пояснил командир корабля.

Экономическая сторона вопроса особенно радует капитана. Стоимость лазерной установки около 40 млн долларов. Электричество вырабатывает штатный генератор. При этом себестоимость одного выстрела всего «один доллар». Не нужно никаких дорогостоящих ракет за миллионы, утверждает Уэллз. Расчет, который обслуживает лазерную установку, состоит из трех человек.

О том, что в течение 2017 года США испытают новую лазерную пушку мощностью 150 кВт еще в начале года заявил контр-адмирал Рональд Боксол. Тогда же в прессе были озвучены примерные характеристики нового оружия: система сможет работать без подзарядки до трех минут, совершать до ста выстрелов и бороться против роя беспилотников до 20 минут.

Параллельно с испытаниями на флоте развивается программа по оснащению лазерным оружием американских ВВС. Так, в июне США провели испытания боевого лазера, установленного на вертолете AH-64 Apache. Вертолет смог сбить неподвижный беспилотник с дистанции 1,4 километра. Кроме того, командование ВВС обещает протестировать лазерное оружие на борту самолетов AC-130.

Круг вероятных целей американских лазерных пушек вполне определен. По информации CNN, для испытаний в Персидском заливе в качестве цели был выбран «беспилотный летательный аппарат, все чаще применяемый Ираном, Северной Кореей, Китаем, Россией и другими противниками».

Скоро рядом с американцами появятся и британские боевые лазеры — Лондон развернул свою лазерную программу еще в 2014 году.

По словам главы стратегического командования ВС США Джона Хайтена, Россия «изучает значимые возможности, включая лазеры для использования в космосе» против американских спутников. Действительно, еще в 1980-е годы лазерным локатором (не боевым лазером) было проведено зондирование в полете американского шаттла «Челленджер». Однако с распадом СССР многие разработки по лазерной тематике прекратились.

В настоящее время в России, вероятно, по-прежнему разрабатывается лазерная установка, смонтированная на базе самолета Ил-76 (А-60). Кроме того, главком Воздушно-космических сил России генерал-полковник Виктор Бондарев рассказывал о возможности вооружить лазерным оружием легкий истребитель МиГ-35.

Военный эксперт Алексей Леонков считает, что возможности американских лазеров пока далеки от того, чтобы называть их боевым оружием.

— То, что сделали сейчас американцы в Персидском заливе можно назвать демонстрацией возможностей лазерного оружия по сбитию пластиковых беспилотных летательных аппаратов. Причем на небольшой дистанции и в ясную погоду. Называть его боевым оружием я бы не стал, так как до параметров, например, стрелкового или зенитно-ракетного вооружения ему еще очень далеко. Есть множество факторов, которые ограничивают его возможности.

У американцев был, скорее всего, 150 кВт лазер, которому нужна энергоустановка в 450 кВт. Она достаточно громоздкая, поскольку не только вырабатывает энергию для выстрелов, но и накапливает ее. Поэтому может быть только в корабельном варианте. Скорострельность таких лазеров ограничена, дальность действия тоже. Она сильно зависит от погодных условий. И против металлических, тем более, бронированных целей, эффективность пока не показана.

Сейчас в Персидском заливе американцы сбили один беспилотник. А если их будет десять? А если сотни беспилотников? А если это будут крылатые ракеты, которые маневрируют? Ну, одну-две еще собьют, а остальные в цель? Получается, эффективность этого лазера ниже, чем даже артиллерийско-зенитного комплекса «Вулкан-Фаланкс», который у них стоит штатно на многих кораблях.

Поэтому называть его полноценным оружием я бы не стал. Но для красивой демонстрации перед арабскими шейхами такие лазеры годятся. Может быть, им понравятся и они выложат за это миллионы, чтобы иметь такую игрушку у себя в арсенале.

«СП»: — CNN утверждает, что себестоимость одного выстрела лазерной пушки ничтожна — всего один доллар…

— Они любят такие вещи. Но если посчитать, сколько стоит одна установка и все оборудование. Они просто не учитывают этого. Это сотни миллионов, даже миллиардов долларов. Например, они испытывали эту установку в авиационном варианте. Ее стоимость была около 5 млрд. долларов, но в серию она так и не пошла.

«СП»: — На какой стадии находятся российские разработки лазерного вооружения?

— У нас разработки велись еще в XX веке. В СССР были разработаны четыре реальных образца в рамках проекта «Сжатие». Это наземный образец «Стилет» на базе установки залпового огня на гусеничном ходу, известной как ТОС-1 «Буратино». Морской вариант был установлен на экспериментальном судне «Дисконт», с которого стреляли по надводным целям. Воздушный вариант — довольно известный проект самолета А-60. Был также и космический аппарат.

Все эти установки испытали, получили необходимые технические и экспериментальные данные, которые легли в основу актуальных разработок лазерного оружия. Такие разработки ведут предприятия нашего ОПК, но их детали, конечно, засекречены. Вот когда будут готов действительно боевой лазер, Минобороны его наверняка продемонстрирует.

«СП»: — О каких возможностях лазеров сейчас идет речь?

— Нынешнее состояние лазерного оружия таково, что оно способно «ослеплять» оптику, оптико-электронные приборы наведения, головки самонаведения ракет. Но про физическое уничтожение серьезных объектов говорить рано. Тут важны скорострельность, ресурсоемкость такого оружия, а также погодные условия. Пойдет дождик и этот лазер будет абсолютно непригоден. То есть лазерное оружие можно использовать в комплексе с традиционными видами вооружения.

О некоторых деталях, касающихся создания и использования Россией лазерного оружия, «СП» рассказал главный редактор портала Military Russia Дмитрий Корнев.

— СССР был фактически родиной лазерных систем. В конце 1960-х и в первой половине 1970-х годов объем работ по этой тематике был огромный. Работы велись в стратегических интересах. В итоге не было создано ни одной действительно боевой системы. Когда позже об этом спросили академика Николая Басова (Нобелевский лауреат по лазерной тематике — авт.), он ответил, что был получен важный результат — ученые убедились, что создание таких систем невозможно, а значит, нашей стране бояться того, что кто-то создаст такие системы нечего.

«СП»: — Тем не менее, работы в этом направлении ведутся?

— Да, это так. Есть несколько программ. Но никаких конкретных данных о них не обнародуется. Ни плохих, ни хороших. Значит, действительно боеготовых систем пока нет. Задача очень сложная. Физические принципы накладывают на возможность использования лазерного оружия ограничения. Требуются огромные энергозатраты. Соответственно, возможны либо наземные, либо корабельные системы. И все равно их возможности будут ограничены.

Даже американцы сейчас сбили специально подготовленный для этого беспилотник. Но, извините, «картонные» модели в СССР тоже сбивали лазером в 1970-е годы. В сети есть фотографии такой установки НПО «Алмаз» на мобильном шасси. Подключенная к источникам электроэнергии, она справлялась с такой задачей.

Но технический прогресс не стоит на месте. Школа специалистов в России осталась. Например, в Томске есть Институт оптики атмосферы РАН, так он постоянно лазером в небо светит. А в советское время он участвовал в разработке противоракетных лазеров.

Кроме того, есть программа размещения лазерной системы на Ил-76, который известен как А-60, в Таганроге. Он проходит переоборудование, правда, уже очень много лет. Такой лазер вряд ли может использоваться как оружие, но он может засвечивать оптические приборы, например, самолетов-разведчиков или спутников.

«СП»: — В прессе была информация о лазерах в оснащении МиГ-35…

— Тот, кто породил эту новость, видимо, плохо понимает о чем идет речь. Физику не обманешь. На Миг-35 разместить лазерное оружие — именно оружие, невозможно. Как невозможно с него «бомбить Луну». Скорее всего, там просто планируют установить новый лазерный дальномер-целеуказатель. Но это не оружие, хотя там и используется лазер.

/Сергей Аксенов, svpressa.ru/

army-news.ru

Россия приняла на вооружение лазерное оружие

Российским военным уже поступили образцы вооружений, основанные на новых физических принципах, ранее считавшихся фантастикой.

Речь идёт, в частности, о лазерном оружии.

Об этом заявил заместитель министра обороны РФ Юрий Борисов на юбилее Всероссийского научно-исследовательского института экспериментальной физики.

«Это не экзотика, не экспериментальные, а опытные образцы — мы уже приняли на вооружение отдельные образцы лазерного оружия», — цитирует слова Борисова РИА Новости.
Ранее Борисов сообщил, что подобное высокотехнологичное оружие во многом определит облик российской армии в соответствии с новой государственной программой вооружений до 2025 года.

источник

Американская армия развязывает новый виток гонки вооружений – лазерный.
Генералы Пентагона рапортуют о создании оружия будущего – якобы бесшумного, невидимого и быстрого.

ВВС США получат лазерные установки для истребителей и даже беспилотников. На разработку пушки ушло семь лет и $40 млн. Лазерное орудие для испытаний установлено на корабль, направленный в Персидский залив

«Мы скоро будем иметь компактный лазер, пригодный для установки на истребители. И день получения такого оружия намного ближе, чем вы думаете», – заявил  генерал Хок Карлайл.

Судя по данным из открытых источников, произойдет это к 2018 году.

Лазерная установка А-60 разработана российскими учеными и проходит успешные испытания. Располагается установка в носовой части самолета – в настоящее время это Ил-76. На крыше судна есть специальный «нарост» с раздвижными створками, а внутри самолета находится основной лазер.

Сделано это для того, чтобы судно не теряло своей аэродинамики. В перспективе лазерными пушками оснастят и самые современные истребители.

Боевой луч способен сбивать баллистические ракеты, вражеские самолеты, поражать не только воображение противника, но и наземные цели: танки и системы ПВО. Дальность такого выстрела составляет до 1500 километров.
Источник

Многие страны продолжают разработку лазерного оружия. И сегодня в этом направлении разрабатываются как боевые лазеры палубного базирования, так и компактные лазеры, способные устанавливаться на истребители. О том, в каком направлении развивается лазерное оружие в России, выясняла редакция сайта телеканала «Звезда».

Накануне западные СМИ сообщили, что в гонку лазерного оружия, в которой уже участвуют США и Германия, включилась и Великобритания. Компания Raytheon, входящая в объединение Babcock International Group, планирует разработать лазерную установку палубного базирования. При этом о мощности боевого лазера не сообщается. Это и понятно, поскольку во всем мире подобные разработки засекречены.

Россия в этом плане не исключение – до сих пор со многих разработок не снят гриф секретности. О том, что разработки лазерного оружия ведутся параллельно с США в 2014 году, заявлял бывший начальник Генштаба ВС РФ генерал армии Юрий Балуевский. Собственно, разработки боевых лазеров в России никогда не прекращались. Однако сегодня они развиваются в направлении, связанном с выводом из строя военных спутников условного противника.

Лазерному лучу, размещенному в вакууме, не мешают ни атмосфера Земли, ни дымовые завесы, ни испарения, поэтому для лазерной установки не составит большого труда вывести из строя оптику вражеского спутника. Лишенный «зрения» спутник-разведчик становится бесполезной железякой, участь которого – одиноко «бороздить просторы вселенной», либо сойти с орбиты и сгореть в атмосфере.

Однако выжигать оптику противника первоначально учились на земле. Такие лазерные комплексы, размещенные на самоходных установках, появились в СССР еще в 1982 году. В частности. НПО «Астрофизика» разработала самоходный лазерный комплекс для противодействия оптико-электронным приборам противника «Стилет», который производился серийно.

Через несколько лет ему на смену пришел комплекс «Сангвин», обладавший более широкими возможностями. В частности, на нем впервые была использована «Система разрешения выстрела» и обеспечено прямое наведение боевого лазера. Атакуя подвижную воздушную цель на дальности 8-10 км, он мог разрушать оптические приемные устройства.

В 1986 году для испытаний была передана палубная версия этой лазерной установки с теми же характеристиками и задачами – «Аквилон». Он предназначался для поражения оптико-электронных систем береговой охраны.

На смену «Сангвину» в 1990 году был разработан самоходный лазерный комплекс «Сжатие», который в автоматическом режиме осуществлял поиск и наведение на объекты, бликующие от излучения многоканального рубинового твердотельного лазера. Защититься от 12 лазеров комплекса «Сжатие» с разной длиной волны, надев на оптику 12 фильтров одновременно, было невозможно. В то же время эффективность наземных комплексов у военных вызывала сомнение.

Возможно, именно поэтому в дальнейшем испытания боевого лазера переместились в воздух. В то же время «Стилет», «Сангвин» и «Сжатие» в какой-то степени стали первыми наземными испытательными стендами.

Для испытаний в воздухе в Советском Союзе была разработана летающая лаборатория А-60 с лазерной экспериментальной установкой на базе самолета Ил-76МД. В разработке проекта участвовал ТАНТК им. Г.М. Бериева совместно с ЦКБ «Алмаз». Для него в филиале института Курчатова в Красной Пахре был создан лазер мощностью 1 МВт, который в ходе испытаний 27 апреля 1984 года успешно поразил воздушную мишень, которой служил стратосферный аэростат на высоте 30-40 км.

Модернизированный лазерный комплекс был установлен на втором самолете А-60, однако работы по нему и лазеру были прекращены в 1993 году. Тем не менее наработки были использованы в начавшейся в 2003 году программе «Сокол-Эшелон», исполнителем которого стал концерн ПВО «Алмаз-Антей».

В течение десятилетия работы по данному комплексу то сворачивались, то возобновлялись. По последним данным, на самолет А-60 планируется установка лазера нового поколения для испытаний системы «ослепления» космических средств наблюдения.

В то же время стоит отметить, что лазеры используются не только в качестве оружия, но и как средство наведения оружия. Здесь они добились большего успеха. В частности, концерн «Радиоэлектронные технологии» разработал многоканальную лазерно-лучевую систему наведения (ЛСН) для вертолетов Ка-52, Ми-8МНП, Ми-28Н, которая обеспечивает высокую точность наведения ракет и позволит вертолетам использовать ракеты различных типов.

ЛСН предназначена для выполнения задачи управления движением и доведения управляемой ракеты до цели, захваченной и удерживаемой автоматом сопровождения или оператором вручную.

По словам первого заместителя генерального директора КРЭТ Игоря Насенкова, лазерные технологии КРЭТ полностью отвечают этим требованиям и могут устанавливаться как на вертолеты, так и на наземную технику, ПЗРК и беспилотники.

Кроме того, лазерные технологии нашли свое применение и как эффективное противодействие современным зенитным ракетным комплексам. НИИ «Экран», входящий в КРЭТ, разработал лазерные системы оптико-электронного подавления. Они обеспечивают надежное и эффективное противодействие современным переносным зенитным ракетным комплексам (ПЗРК).

Самой известной разработкой в этом сегменте стал комплекс «Президент-С». Во время испытаний по различным авиационным целям ни одна из ПЗРК «Игла» не достигла цели.

Очевидно, что лазеры являются одним из самых перспективных направлений развития вооружений и средств защиты, а поэтому одним из самых засекреченных.

Источник

Так что какие именно лазерные комплексы получила российская армия узнаем в ближайшем будущем.

rurik-l.livejournal.com

Какое лазерное оружие получила российская армия

Весьма сенсационную новость сообщил заместитель министра обороны России Юрий Борисов — он заявил, что «Вооруженные силы России получили отдельные образцы лазерного оружия».

При этом Борисов подчеркнул — это не экспериментальные, а уже «боевые» образцы лазерного оружия, которые уже приняты на вооружение российской армией.

Отметим, что успехи США в создании полноценного лазерного оружия даже международные эксперты оценивают то как «попытки повторить успехи СССР», то как «разовые разработки для престижа американской армии».

Выступая на заседании, посвященном 70-летию Российского федерального ядерного центра в Сарове, Борисов пояснил «Это не экзотика, не экспериментальные, опытные образцы — мы уже приняли на вооружение отдельные образцы лазерного оружия». Он добавил, что «оружие на новых физических принципах сегодня стало реальностью». «Сами технологии существовали и раньше, однако только сейчас они начинают применяться в вооружении»,- намекнул генерал на источники технологий, имея в виду разработанные еще в СССР и модернизированные системы.

Отметим, что еще с середины 1950-х годов в СССР осуществлялись широкомасштабные работы по разработке и испытанию лазерного оружия высокой мощности — как средства непосредственного поражения целей в интересах стратегической противокосмической и противоракетной обороны. Т.к. конкретной информации очень немного, давайте попытаемся представить, что из советских разработок могло быть можернизированно и принято на вооружение …

«Подобное высокотехнологичное оружие во многом определит облик российской армии в соответствии с новой государственной программой вооружений до 2025 года»,- отметил представитель минобороны России.

Напомним, что в основу «оружия на новых физических принципах» положены физические процессы и явления, которые ранее не использовались ранее в оружии обычном (холодном, огнестрельном) или в оружии массового поражения (ядерном, химическом, бактериологическом). В частности, мировые военные эксперты выделяют лазерное, радиочастотное, пучковое, кинетическое (в том числе рельсотрон) оружие.

Напомним, что еще в декабре 2014 года в СМИ появилось заявление бывшего начальника Генштаба ВС РФ, генерала армии Юрия Балуевского. Он признал, что «Российская Федерация ведёт работу по созданию систем лазерного оружия». После ситуацию прокомментировал действующий замкомандующего Войсками ВКО генерал-майор Кирилл Макаров.

«Если в „Звездных войнах» Рейгана были, действительно, страшилки, то сейчас — нет. Конечно, оно имеет потенциал как в ослеплении средств разведки, так и в поражении оружия. Я знаю, что такие разработки ведутся в США, но я хочу сказать, что мы не отстаём в этом вопросе»,- намекнул он.

Еще в 2012 году в СМИ была информация, что был подписан указ об образовании Фонда перспективных исследований (ФПИ). Целью этой организации является содействие различным научным работам оборонного назначения, которые требуют серьезной государственной поддержки. Согласно некоторым источникам, в ближайшем будущем ФПИ придет на смену Военно-промышленной комиссии при правительстве и возьмет на себя ее функции. Большинство подробностей о работе новой организации пока еще не стало достоянием общественности, однако уже появились сообщения о возможных проектах, которыми она займется.

«Известия» со ссылкой на источник в оборонной промышленности сообшали, что в 2013 году будет возобновлена программа исследования и создания боевых лазеров. К научной и конструкторской работе будут привлечены концерн «Алмаз-Антей», ТАНТК им. Г.М. Бериева и компания «Химпромавтоматика». Сообщается, что министерство обороны уже выработало свою версию облика будущего лазерного оружия и передало соответствующую документацию занятым в проекте организациям. Целью будущих работ является создание полноценной боевой системы, способной уничтожать различные цели. Очевидно, все исследования будут идти под эгидой ФПИ.

«Среди прочих были реализованы программы «Терра» и «Омега». Например, Википедия сообщает, что действующий прототип лазерной системы А-60 после развала СССР «был перебазирован из Сары-Шаган на территорию России и по некоторым сведениям с 2011 года задействован в программе «Сокол-Эшелон». Энциклопедия со ссылками на достоверные источники напоминает, что «в Советском Союзе «лазерные пистолеты» использовались в космической отрасли, а «лучевые карабины» находились на складах, как минимум до 1995 года».

Также, по данным СМИ, «с 1980 по 1985 год на вспомогательном судне Черноморского флота «Диксон» проводились испытания лазерной установки МСУ, созданной по проекту «Айдар» и предназначенной для базирования в космосе и уничтожения спутников». Кроме того, еще в 1987 году на ракете-носителе «Энергия» был запущен макет космической лазерной боевой платформы Скиф-ДМ.

США, в свою очередь, как и СССР-Россия создавали свои системы лазерного оружия — среди них были и «бластеры», и ослепляющие винтовки, и стационарные установки на кораблях и самолетах для поражения танков, боеголовок и живой силы «вероятного противника».

Впрочем, по мнению экспертов и данным СМИ, Россия «была первой страной, достигшей в этой области заметных результатов». Например, западные военные эксперты, комментируя сообщения об успешных испытаниях компанией «Боинг» химического лазера на самолете, заявили «Россия начала заниматься разработками в области тактического лазерного оружия раньше США и имеет в своем арсенале опытные образцы высокоточных боевых химических лазеров».

В частности, эксперты пишут, что «первая подобная установка была испытана нами еще в 1972 году — уже тогда русская мобильная «лазерная пушка» была способна успешно поражать воздушные цели». Российские же военные добавили, что «с тех пор возможности России в данной области значительно возросли, и США приходится нас догонять».

Кстати, западные эксперы также заметили, что «еще в мае 2006 г. ряд российских СМИ сообщили о том, что отечественная программа вооружений предполагает в перспективе осуществление работ по исследованию и разработке лазерного и кинетического оружия».

И действительно, об этом напрясую заявлял даже генеральный разработчик «Тополя» и «Булавы». Процитируем: «В рограмме вооружений, которая одобрена научно-техническим советом Военно-промышленной комиссии, есть соответствующие разделы, где работы в этом направлении предполагаются».

Стоит отметить, что один из ведущих специалистов советской программы военных лазеров профессор Петр Зарубин рассказывал СМИ — к 1985 году «наши ученые точно знали, что в США не могут создать компактный боевой лазер, а энергия самого мощного из них не превышала тогда энергии взрыва малокалиберного пушечного снаряда».

«Перспективы создания боевого лазерного оружия эксперты в этой области, несмотря на противоречивые и недоказанные данные в связи с закрытостью этой темы, оценивают, как реалистичные. Реальное появление боевого лазерного оружия возможно в период 2015-2020 годы»,- писали западные военные аналитики.

Перечислим конкретные советские образцы лазерного оружия.

«Стилет» был призван вывести из строя оптико-электронные системы наведения оружия противника. Его потенциальные цели – танки, самоходные артиллерийские установки и даже низколетящие вертолеты. Обнаружив цель средствами радиолокации, «Стилет» производил ее лазерное зондирование, пытаясь обнаружить оптическое оборудование по бликующим линзам. Точно локализовав «электронный глаз», аппарат поражал его мощным лазерным импульсом, ослепляя или выжигая чувствительный элемент (фотоэлемент, светочувствительную матрицу или даже сетчатку глаза прицелившегося бойца).

СЛК 1К17 «Сжатие» был сдан на вооружение в 1992 году и был намного совершеннее «Стилета». Первое отличие, которое бросается в глаза – применение многоканального лазера. Каждый из 12 оптических каналов (верхний и нижний ряд линз) имел индивидуальную систему наведения. Многоканальная схема позволяла сделать лазерную установку многодиапазонной. В качестве противодействия подобным системам противник мог защищать свою оптику светофильтрами, блокирующими излучение определенной частоты. Но против одновременного поражения лучами сразной длиной волны светофильтр бессилен.

Объективы в среднем ряду относятся к системам прицеливания. Маленькая и большая линзы справа – это зондирующий лазер и приемный канал автоматической системы наведения. Такая же пара линз слева – это оптические прицелы: маленький дневной и большой ночной. Ночной прицел оснащался двумя лазерными подсветчиками-дальномерами. В походном положении и оптика систем наведения, и излучатели закрывались бронированными щитками.

Военный аппарат, которым НПО «Астрофизика» действительно может гордиться, лазерный комплекс дистанционной химической разведки КДХР-1Н «Даль», был сдан на вооружение в 1988 году.

Побробнее эту технику мы обсуждали тут — САМОХОДНЫЕ ЛАЗЕРНЫЕ КОМПЛЕКСЫ СССР

Были еще и такие разработки:


Телескоп ТГ-1 лазерного локатора ЛЭ-1, полигон Сары-Шаган (Зарубин П.В., Польских С.В. Из истории создания высокоэнергетических лазеров  и лазерных систем в СССР. Презентация. 2011 г.).

Работы по программе «Терра-3» развивались в двух основных направлениях: лазерная локация (включая проблему селекции целей) и лазерное поражение ГЧ баллистических ракет. Работам по программе предшествовали следующие достижения: в 1961 г. возникла собственно идея создания фотодиссоционных лазеров (Раутиан и Собельман, ФИАН) и в 1962 г. начаты исследования лазерной локации в ОКБ «Вымпел» совместно с ФИАН, а так же предложено использовать излучение фронта ударной волны для оптической накачки лазера (Крохин, ФИАН, 1962 г.). В 1963 г. в ОКБ «Вымпел» начаты проработки проекта лазерного локатора ЛЭ-1.

В ФИАН было исследовано новое явление в области нелинейной оптики лазеров — обращение волнового фронта излучения. Это крупное открытие позволило в дальнейшем совершенно по новому и весьма успешно подойти к решению ряда проблем физики и техники мощных лазеров, прежде всего проблем формирования предельно узкого пучка и его сверхточного наведения на цель. Впервые именно в программе «Терра-3» специалистами ВНИИЭФ и ФИАН было предложено использовать обращение волнового фронта для наведения и доставки энергии на мишень.

Подробнее эти работы мы уже обсуждали тут — БОЕВЫЕ ЛАЗЕРНЫЕ КОМПЛЕКСЫ СССР

Экспериментальный боевой лазерный комплекс воздушного базирования получил обозначение А-60 и в качестве базы для него использовался транспортный самолет Ил-76МД, (на сегодняшний день конечно уже устаревший тип ВС) переоборудование которых осуществлялось в Таганроге. Заместителем главного конструктора на ТМЗ по комплексу А-60 был В.Д. Заремба, ведущим конструктором по самолету был Ю.А.Бондарев. Разработчиком лазерного комплекса выступали ЦКБ ‘Алмаз’ (ныне в составе Концерна ПВО ‘Алмаз-Антей’) и КБ химической автоматики. Лазер, предположительно, газодинамический углеродный на жидких элементах, мегаваттного класса мощности.

Базовым самолетом для создания летающей лаборатории стал самолет Ил-76МД (СССР-86879), на котором были проведены глубокие доработки В носовой части вместо штатного метеорадара установлен бульбообразный обтекатель со «специальной аппаратурой» (предположительно, РЛС дальнего обнаружения и наведения и лазерная система наведения) По бокам фюзеляжа под обтекателями были установлены два турбогенератора АИ-24ВТ мощностью 2,1 МВт, обеспечивающие работу лазерного комплекса (пушки). Сама лазерная установка была выполнена с убирающейся оптической головкой в отсеке с раздвижными створками, размещенными в верхней части фюзеляжа за центропланом.

Подробнее про него мы обсуждали тут — У РОССИИ СНОВА ПОЯВИТСЯ БОЕВОЙ ЛАЗЕР

Вот еще интересный материал про мобильные лазерные технологические комплексы и вот еще Прадедушка бластера из СССР

masterok.livejournal.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *