Фото кшм – Практика вносит коррективы. применение КШМ в боях в Чечне » Военное обозрение

Практика вносит коррективы. применение КШМ в боях в Чечне » Военное обозрение

Боевой пример. Мотострелковый батальон вел ожесточенный бой в Грозном. Его командир имел довольно устойчивую связь с подчиненными ротами и взводами. Вопросы же взаимодействия с соседями, танкистами, десантниками, авиацией, подразделениями МВД решать удавалось с большим трудом – недоставало радиосредств. Когда же старший начальник после настоятельных просьб выделил из резерва командно-штабную машину (КШМ), проблема была снята, как говорится, с повестки дня. А именно: с ее помощью устойчивая связь поддерживалась не только с вышестоящим штабом и взаимодействующими подразделениями, но и через одну–две инстанции вниз.
Командно-штабная машина Р-145БМ «Чайка» на базе бронетранспортёра БТР-60ПА

Командно-штабная машина БМП-1КШ («Поток-2», объект 774) на базе БМП-1
Командно-штабная машина Р-142Н («Деймос-Н») на базе автомобиля ГАЗ-66

Анализ опыта обеспечения управления в соединениях и частях при ведении боевых действий на территории Чеченской Республики позволяет утверждать, что радиосвязь по-прежнему остается основным средством в тактическом звене. Особенно в полку, батальоне, роте и взводе, где для управления широко применяются КШМ, носимые радиостанции и радиосредства бронеобъектов (танков, бронетранспортеров и боевых машин пехоты).

В боях использовались КШМ на бронированной (Р-145БМ и БМП-1КШ) и автомобильной (Р-142Н) базе. Каждая из них, как правило, работала в одной коротковолновой (KB) и одной–двух ультракоротковолновой (УКВ) радиосетях. Если в экипаже имелся некомплект личного состава (а это было не редкостью), то один радист поддерживал связь в нескольких радиосетях, применяя приставку селективного вызова корреспондентов. Когда же нужно было иметь связь с подчиненными подразделениями на одну–две инстанции вниз, а также для решения вопросов взаимодействия с артиллерией и другими родами войск, использовались возможности УКВ-станций по автоматической перестройке на заранее подготовленные частоты.

Вместе с тем были выявлены и недостатки в работе командно-штабных машин. В частности, в тех, которые находятся на вооружении с семидесятых годов. Взять Р-145БМ. Как известно, она смонтирована на транспортной базе БТР-60, уступающей боевым средствам мотострелковых подразделений, например, БТР-80. В результате во время боев такие КШМ довольно часто выходили из строя. А поскольку ремонтные подразделения частей мало приспособлены для восстановления БТР-60, то поломки устраняли ремонтные органы центрального подчинения.

Кроме того, Р-145БМ легко отличить от линейных боевых машин. Поэтому такие КШМ боевики стремились вывести из строя в первую очередь. Особенно во время боев в населенных пунктах. Это приводило к нарушению управления. Вместе с тем в частях и подразделениях, где командно-штабные машины размещались на базе БМП-1, их довольно трудно обнаружить среди других боевых машин пехоты. Следовательно, здесь и потери были меньше.
Что же касается Р-142Н, которые оборудованы на шасси автомобиля ГАЗ-66, то они уязвимы даже от стрелкового оружия. Поэтому в некоторых частях потери подобных КШМ достигали 50 процентов и более.

Как показала практика, вышеперечисленные командно-штабные машины оснащены морально устаревшими средствами связи, которые не могут полностью удовлетворить потребности в управлении. Так, во время боев в Чечне нередко возникала необходимость довести до командиров и штабов информацию в документированном виде. Однако этого сделать было нельзя – в КШМ нет подобной аппаратуры.

Следует также отметить еще один недостаток КШМ. Когда мотострелковые и десантные батальоны выполняли самостоятельные задачи, действуя в отрыве от своих полков, нередко ими управляли не только командиры частей и соединений, но и руководители более высоких инстанций. С помощью штатных средств, входящих в комплект КШМ, обеспечить связь, например, с командующим объединенной группировкой было очень трудно, а порой и невозможно. Поэтому этим подразделениям приходилось придавать более мощные радиостанции и другую технику. В результате узлы связи мсб и пдб становились громоздкими, а их мобильность и разведзащищенность резко снижались.

И еще. В составе командно-штабных машин нет авиационных радиостанций, а авианаводчики, выделяемые от группы боевого управления со своими средствами связи, на КНП батальонов, как правило, находятся непостоянно. Поэтому взаимодействие подразделений, которые вели бой или совершали марш, с поддерживающими (прикрывающими) их самолетами и боевыми вертолетами было затруднено. Случалось, что авиаторы действовали неэффективно, а иногда непреднамеренно наносили удары по своим войскам.

На наш взгляд, нерешенным остается вопрос электроснабжения КШМ. Основной источник питания – бензоэлектрический агрегат АБ-1-П/30. Однако он имеет недостаточный эксплуатационный ресурс двигателя 2СДВ. Резерв – генератор отбора мощности двигателя автомобиля (БТР, БМП), но его можно использовать только на стоянке. К тому же расходуется большое количество горюче-смазочных материалов. Более того, в Р-142Н и БМП-1КШ не предусмотрена возможность электропитания аппаратуры от электросети 220 В.


Думается, что настало время создавать командно-штабные машины нового поколения, которые должны отвечать следующим требованиям.

Во-первых, все КШМ нужно монтировать только на бронебазе. Внешне они не должны отличаться от линейных боевых машин. В их комплект целесообразно включить технику документированной связи, работающую по каналам, образованным собственными радиосредствами. А также аппаратуру определения своего местоположения, передачи (приема) навигационной информации. Это позволит повысить качество управления в тактическом звене.

Во-вторых, в новых КШМ желательно предусмотреть возможность установки (при необходимости) малогабаритных переносных станций спутниковой связи. В результате можно будет поддерживать связь с органами управления любого ранга.

В-третьих, комплектация командно-штабных машин батальонного и полкового звена обязательно должна включать авиационную радиостанцию. Работать на ней будет нештатный авианаводчик, подготовленный из офицеров штаба, например, мсб или мсп.

В-четвертых, вопрос электроснабжения КШМ следует решать с учетом комплексного использования различных источников питания.
В заключение отметим, что, несмотря на имеющиеся недостатки, состоящие на вооружении командно-штабные машины с хорошо подготовленными экипажами довольно успешно применялись в боях в Афганистане и Чечне. Однако, чтобы обеспечить более высокую боевую эффективность частей и подразделений, оснащенных современными средствами вооруженной борьбы, необходимо иметь КШМ, отвечающие самым высоким требованиям по управлению войсками.

topwar.ru

Командно-штабная машина — Википедия

У этого термина существуют и другие значения, см. КШМ. Советская командно-штабная машина БМП-1КШ «Поток-2» Штабная машина для пункта управления военного округа «МШ-12 Светлица». Штабная машина для пункта управления военного округа «МШ-12 Светлица». Комбинированная радиостанция Р-142НМР. Комбинированная радиостанция Р-142НМР.

Командно-штабная машина (КШМ) — боевая машина на броневой, танковой или автомобильной базе, которая предназначена для обеспечения радиосвязи и управления в тактическом звене сухопутных войск.

В сухопутных войсках для боевого управления уровня полк (бригада) — дивизия, за исключением специализированных машин управления ракетными и артиллерийскими подразделениями, используются командно-штабные машины (КШМ) — БТР-50ПУ,

ru.wikipedia.org

Кривошипно-шатунный механизм — Энциклопедия журнала "За рулем"

В одноцилиндровом четырехтактном двигателе на каждые два оборота коленчатого вала приходится четыре хода поршня, только один из которых - рабочий. Это приводит к неравномерной работе двигателя. Для небольших двигателей, таких? Как легкие лодочные моторы, двигатели мопедов, легких мотоциклов и т. д., такая неравномерность не представляет большой проблемы. Для более тяжелых автомобилей требуется большая мощность двигателя, а, следовательно, и больший рабочий объем цилиндра. В этом случае неравномерность работы двигателя становится более заметной. Вот почему на современных автомобилях применяются многоцилиндровые ДВС. Применение нескольких цилиндров, в которых рабочий ход происходит в разные моменты времени, дает возможность сгладить пульсации крутящего момента на вале двигателя. Большинство легковых автомобилей малого класса имеют четырехцилиндровые двигатели, хотя иногда используются двухцилиндровые и трехцилиндровые. На более тяжелых автомобилях, требующих большой мощности, наряду с четырехцилиндровыми, могут применяться пятицилиндровые и шестицилиндровые двигатели. Легковые автомобили высшего класса оборудуются восьмицилиндровыми и двенадцатицилиндровыми двигателями, хотя встречаются двигатели с десятью цилиндрами. Большинство грузовых автомобилей средней и большой грузоподъемности имеют двигатели с шестью и восемью цилиндрами.

Неподвижные детали кривошипно-шатунного механизма

Кривошипно-шатунный механизм многоцилиндрового двигателя состоит из подвижных и неподвижных деталей.
К подвижным деталям КШМ относятся: поршень, поршневые кольца, поршневой палец, шатун, коленчатый вал, вкладыш подшипника и маховик. Неподвижными деталями КШМ являются: блок цилиндров, головка блока цилиндров и прокладка головки блока.
Кривошипно-шатунный механизм воспринимает давление газов, возникающих при сгорании топлива в цилиндрах двигателя, и преобразует это давление в механическую работу по вращению коленчатого вала.

Схемы расположения цилиндров в двигателях различной компоновки:
а — рядный четырехцилиндровый;
б — V-образный шестицилиндровый;
в — оппозитный четырехцилиндровый;
г — VR-двигатель шестицилиндровый;
д и е — W-образные 12-цилиндровые двигатели;
α — угол развала

Расположение цилиндров в блоке определяет компоновочную схему двигателя. Если оси цилиндров расположены в одной плоскости, то такие двигатели называют рядными.

Рядные двигатели устанавливаются на автомобиле или вертикально, или под углом к вертикальной плоскости для уменьшения высоты, занимаемой двигателем, а в некоторых случаях - горизонтально, например при размещении под полом автобуса. В V-образных двигателях оси цилиндров находятся в двух плоскостях, расположенных под углом друг к другу. Угол между осями цилиндров может быть различным. Разновидностью такого двигателя можно считать двигатель с так называемыми оппозитными (противолежащими) цилиндрами (в некоторых странах такую компоновку называют «boxer»), у которого этот угол составляет 180°. Сравнительно недавно появился двигатель W12, разработанный группой компаний Volkswagen, схема которого представляет собой как бы два V-образных двигателя с разными углами между осями цилиндров, имеющими общий коленчатый вал.

Двигатель W12, устанавливаемый на AudiA8 с 2001г., практически состоит из двух двигателей V6 с различными углами развала цилиндров, использующих общий коленчатый вал

Базовые понятия КШМ ДВС - это диаметр цилиндра и ход поршня. Диаметр цилиндра - это диаметр отверстия, под поршень, выполненного в блоке цилиндров ..

Ход поршня — расстояние между ВМТ и НМТ. Диаметр цилиндра и ход поршня принято измерять в миллиметрах, а объем двигателя – в литрах. Понятно, что два двигателя одинакового объема могут иметь различное число цилиндров и различную компоновку.

Если диаметр цилиндра больше хода поршня, то такой двигатель называют короткоходным. Данные двигатели развивают более высокие максимальные обороты коленчатого вала, и в них упрощается размещение впускных и выпускных клапанов, что дает возможность получения высокой мощности. Если ход поршня превышает диаметр цилиндра, то двигатель считается длинноходным. Такие двигатели, как правило, более экономичны и характеризуются большими значениями крутящего момента. Длинноходные двигатели имеют большую высоту, но короче по длине.
При разработке конструкции двигателя приходится решать вопрос о выборе величины объема отдельного цилиндра. Если объем цилиндра сделать очень маленьким, то он будет плохо заполняться топливно-воздушной смесью, и мощность такого двигателя будет низкой. В то же время нельзя безгранично увеличивать объем цилиндра, потому что при этом фронт распространения пламени может не успеть дойти до стенок цилиндра за то короткое время, которое отводится на рабочий ход, а это приведет к уменьшению давления в цилиндре и скажется на уменьшении мощностных показателей двигателя.

В современных автомобильных двигателях объем отдельного цилиндра редко превышает 0,8л, а в большинстве двигателей составляет около 0,5л.
Чем большее число цилиндров имеет двигатель, тем равномернее он работает. Пульсации, возникающие при работе ДВС, могут быть уменьшены применением массивного маховика, устанавливаемого на конце коленчатого вала. Чем меньше цилиндров имеет двигатель, тем большей массой должен обладать маховик. В то же время массивный маховик из-за своей инерционности ухудшает способность двигателя быстро набирать обороты. Поэтому конструкторам двигателей приходится принимать компромиссные решения.

wiki.zr.ru

КШМ Р-142 | Модельный блог

  • Разместил sergey
  • Дата: 17 июля 2014 в 17:18

Залогом успеха любой военной операции является грамотная координация  и четкое управление  подразделениями.


Это невозможно осуществить без надежной и бесперебойной радиосвязи. Именно для этих целей и создаются командно-штабные машины (КШМ), в состав которых входят различные типы радиоаппаратуры. Радиостанция Р-142Н предназначена для организации каналов связи тактического звена в КВ и УКВ диапазонах. Она способна обеспечивать радиосвязь в открытом и закрытом режимах. Связь может осуществляться как на стоянке, так и на ходу (скорость движения до 40 км/ч).  Аппаратура КШМ Р-142 установлена в кузове на базе автомобиля повышенной проходимости ГАЗ-66. Кузов машины состоит из двух отсеков. В переднем, аппаратном, расположены два рабочих места радистов и находится основная часть радиооборудования, так же в нем расположены органы управления отопителем и ФВУ. В заднем, командном отсеке, расположены рабочие места командира и офицеров с аппаратурой коммутации и связи.  В состав оборудования, в зависимости от комплектации, могут входить УКВ радиостанции Р-111, Р-173М, Р-171М, Р-123, Р-163-50У, КВ радиостанции Р-134М или Р-130М. Имеется аппаратура коммутации для работы с радиостанциями и внутренней связи. Есть возможность подключения выносного телефонного аппарата типа ТА-57 по линии до 500м. КШМ может дополняться аппаратурой для связи с авиационными радиостанциями и аппаратурой для шифрованной связи. Кроме Советской Армии, КШМ Р-142 выпускалась и для нужд стран Варшавского договора. Машины могли отличаться кузовом и составом радиоаппаратуры. КШМ Р-142 до сих пор состоит на вооружении сухопутных войск Российской Федерации. Машина обладает большим ресурсом надежности, не прихотлива в работе и обслуживании.

Фото радиостанции Р-142Н, сделаны в День Победы 9 мая 2013 года. Надеюсь, что они помогут Вам при постройке модели, например, в масштабе 1:35 от «Восточного Экспресса» или Balaton в масштабе 1:72. Правда, чтобы сделать КШМ Р-142 в масштабе 1:35 придется самостоятельно изготовлять кузов и антенны, так конкретно эта модификация машины не выпускается. А вот в 1:72 венгерская фирма Balaton выпускает смоляную модель именно Р-142Н. Надеюсь, что в скором времени модель ГАЗ-66 и различных специальных машин на его базе, в том числе и радиостанции Р-142, появится в пластике и в масштабе 1:72.

 

Рубрика: Walkaround

hobby-models.ru

Кривошипно-шатунный механизм (КШМ). Назначение, устройство, принцип действия

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Детали кривошипно-шатунного механизма можно разделить на:

  • неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
  • подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.

Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.

Блок-картер

Блок-картер — основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.

Цилиндр

Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.

Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.

В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.

Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.

В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой — для поршня левой половины блока.

Блок цилиндров

На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.

Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.

Нижняя часть картера, предохраняющая детали кривошипно-шатунного и других механизмов двигателя от загрязнения, обычно называется поддоном. В двигателях сравнительно малой мощности поддон служит также резервуаром для моторного масла. Поддон чаще всего выполняется литым или изготавливается из стального листа штамповкой. Для устранения подтекания масла между блок-картером и поддоном устанавливается прокладка (на двигателях небольшой мощности для уплотнения этого стыка часто используется герметик — «жидкая прокладка»).

Остов двигателя

Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.

Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.

Поршень

Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.

Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.

Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла

Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).

При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.

Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.

Поршневые кольца

Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.

Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.

Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.

Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.

Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.

Поршневой палец

Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.

Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.

Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).

Шатунная группа кривошипно-шатунного механизма состоит из:

  • шатуна
  • верхней и нижней головок шатуна
  • подшипников
  • шатунных болтов с гайками и элементами их фиксации

Шатун

Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.

Рис. Детали шатунной группы:
1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла

Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.

Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.

В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.

Коленчатый вал

Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.

Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.

Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.

Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.

В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.

Маховик

Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.

Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем

Видео-уроки о КШМ

ustroistvo-avtomobilya.ru

Р-149БМР «Кушетка-Б» ТТХ, Видео, Фото, Скорость, Броня

Бронетехника России и мира фото, видео смотреть онлайн значительно отличалась от всех предшественников. Для большого запаса плавучести заметно увеличили высоту корпуса, а для улучшения остойчивости ему в поперечном сечении была придана трапецеидальная форма. Нужную пулестойкость корпусу обеспечивала катаная цементованная броня с дополнительно закаленным наружным слоем марки КО ("Кулебаки- ОГПУ"). При изготовлении корпуса применялась сварка броневых листов с внутренней мягкой стороны, для облегчения сборки применялись специальные стапели. Для упрощения монтажа агрегатов верхние броневые листы корпуса сделали съемными с уплотнением на тканевых прокладках, смазанных суриком.

Бронетехника второй мировой войны  в которой экипаж их двух человек размещался вблизи продольной оси в затылок друг другу, но башня с вооружением была смещена на 250 мм к левому борту. Силовой агрегат смещен к правому борту таким образом, что доступ для ремонта двигателя был возможен изнутри боевого отделения танка после снятия предохранительной перегородки. В корме танка по бортам располагались два бензобака емкостью по 100 л., а непосредственно за двигателем – радиатор и теплообменник, омываемые забортной водой при движении на плаву. На корме, в специальной нише, располагался гребной винт с водоходными рулями. Баланс танка был подобран таким образом, что на плаву он имел небольшой дифферент на корму. Привод гребного винта осуществлялся карданным валом от коробки отбора мощности, укрепленной на картере коробки перемены передач.

Бронетехника СССР в январе 1938 г. по ходатайству начальника АБТУ Д. Павлова вооружение танка должно было быть усилено путем установки 45-мм полуавтоматической пушки или 37-мм автоматической пушки, причем в случае установки полуавтомата экипаж должен был быть увеличен до трех человек. Боекомплект танка должен был состоять из 61 выстрела для 45-мм пушки и 1300 патронов к пулемету. КБ завода № 185 выполнило два проекта по теме "Замок", в качестве прототипа которых использовался шведский танк "Ландсверк-30".

Бронетехника вермахта не избежала неприятностей с форсированием двигателя. К сказанному можно добавить только то, что указанный кризис был преодолен фактически только в 1938 г., для чего танк получил не только форсированный двигатель. С целью усиления подвески в нем были применены более толстые листы рессор. Пошли резиновые бандажи из неопрена – отечественного синтетического каучука, начато изготовление траков из стали Гартфильда горячей штамповкой, введены закаленные ТВЧ пальцы. Но все эти изменения в танк были введены не одномоментно. Корпус танка с наклонными бронелистами изготовить в срок не удалось. Однако коническая башня улучшенной защиты была подана вовремя, и танк с прежним корпусом, усиленной подвеской (за счет установки более толстых листов рессор), форсированным двигателем и новой башней поступил на испытания на НИБТполигон.

Современная бронетехника шла под условным индексом Т-51. В нем был сохранен процесс перехода с гусениц на колеса, как у прототипа, – опусканием специальных рычагов с колесами без выхода человека. Однако после корректировки требований к танку, сделавших его трехместным (решено было сохранить дублирующее управление у заряжающего), и усиления его вооружения до уровня БТ колесный ход по типу "Ландсверка" реализовать оказалось уже невозможным. Кроме того, трансмиссия колесного привода танка была чрезмерно сложной. Поэтому вскоре работы по теме "Замок" велись уже над танком Т-116, в котором "переобувание" производилось по типу БТ – снятием гусеничных цепей.

oruzhie.info

Устройство кривошипно-шатунного механизма

Основной задачей двигателей внутреннего сгорания, использующиеся на всевозможной технике, является преобразование энергии, которая выделяется при сжигании определенных веществ, в случае с ДВС – это топливо на основе нефтепродуктов или спиртов и воздуха, необходимого для горения.

Преобразование энергии производится в механическое действие – вращение вала. Далее уже это вращение передается дальше, для выполнения полезного действия.

Однако реализация всего этого процесса не такая уж и простая. Нужно организовать правильно преобразование выделяемой энергии, обеспечить подачу топлива в камеры, где производиться сжигание топливной смеси для выделения энергии, отвод продуктов горения. И это не считая того, что тепло, выделяемое при сгорании нужно куда-то отводить, нужно убрать трение между подвижными элементами. В общем, процесс преобразования энергии сложен.

Поэтому ДВС – устройство довольно сложное, состоящее из значительного количества механизмов, выполняющих определенные функции. Что же касается преобразования энергии, то выполняет его механизм, называющийся кривошипно-шатунным. В целом, все остальные составные части силовой установки лишь обеспечивают условия для преобразования и обеспечивают максимально возможный выход КПД.

Принцип действия кривошипно-шатунного механизма

Основная же задача лежит на этом механизме, ведь он преобразовывает возвратно-поступательное перемещение поршня во вращение коленчатого вала, того вала, от движения которого и производится полезное действие.

Устройство КШМ

Чтобы было более понятно, в двигателе есть цилиндро-поршневая группа, состоящая из гильз и поршней. Сверху гильза закрыта головкой, а внутри ее помещен поршень. Закрытая полость гильзы и является пространством, где производится сгорание топливной смеси.

При сгорании объем горючей смеси значительно возрастает, а поскольку стенки гильзы и головка являются неподвижными, то увеличение объема воздействует на единственный подвижный элемент этой схемы – поршень. То есть поршень воспринимает на себя давление газов, выделенных при сгорании, и от этого смещается вниз. Это и является первой ступенью преобразования – сгорание привело к движению поршня, то есть химический процесс перешел в механический.

И вот далее уже в действие вступает кривошипно-шатунный механизм. Поршень связан с кривошипом вала посредством шатуна. Данное соединение является жестким, но подвижным. Сам поршень закреплен на шатуне посредством пальца, что позволяет легко шатуну менять положение относительно поршня.

Шатун же своей нижней частью охватывает шейку кривошипа, которая имеет цилиндрическую форму. Это позволяет менять угол между поршнем и шатуном, а также шатуном и кривошипом вала, но при этом смещаться шатун вбок не может. Относительно поршня он только меняет угол, а на шейке кривошипа он вращается.

Поскольку соединение жесткое, то расстояние между шейкой кривошипа и самим поршнем не изменяется. Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется.

За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.

Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом.

На деле же все значительно сложнее, ведь имеются взаимодействия между элементами этих составляющих, причем механические, а это значит, что в местах контакта этих элементов будет возникать трение, которое нужно по максимуму снизить. Также следует учитывать, что один кривошип неспособен взаимодействовать с большим количеством шатунов, а ведь двигатели создаются и с большим количеством цилиндров – до 16. При этом нужно же и обеспечить передачу вращательного движения дальше. Поэтому рассмотрим, из чего состоит цилиндро-поршневая группа (ЦПГ) и кривошипно-шатунный механизм (КШМ).

Начнем с ЦПГ. Основными в ней являются гильзы и поршни. Сюда же входят и кольца с пальцами.

Гильза

Съёмная гильза

Гильзы существуют двух типов – сделанные непосредственно в блоке и являющиеся их частью, и съемные. Что касается выполненных в блоке, то представляют они собой цилиндрические углубления в нем нужной высоты и диаметра.

Съемные же имеют тоже цилиндрическую форму, но с торцов они открыты. Зачастую для надежной посадки в свое посадочное место в блоке, в верхней части ее имеется небольшой отлив, обеспечивающий это. В нижней же части для плотности используются резиновые кольца, установленные в проточные канавки на гильзе.

Внутренняя поверхность гильзы называется зеркалом, потому что она имеет высокую степень обработки, чтобы обеспечить минимально возможное трение между поршнем и зеркалом.

В двухтактных двигателях в гильзе проделываются на определенном уровне несколько отверстий, которые называются окнами. В классической схеме ДВС используется три окна – для впуска, выпуска и перепуска топливной смеси и отработанных продуктов. В оппозитных же установках типа ОРОС, которые тоже являются двухтактными, надобности в перепускном окне нет.

Поршень

Поршень принимает на себя энергию, выделяемую при сгорании, и за счет своего перемещения преобразовывает ее в механическое действие. Состоит он из днища, юбки и бобышек для установки пальца.

Устройство поршня

Именно днищем поршень и воспринимает энергию. Поверхность днища в бензиновых моторах изначально была ровной, позже на ней стали делать углубления для клапанов, предотвращающих столкновение последних с поршнями.

В дизельных же моторах, где смесеобразование происходит непосредственно в цилиндре, и составляющие смеси туда подаются по отдельности, в днищах поршня выполнена камера сгорания – углубления особой формы, обеспечивающие более лучшее смешивание компонентов смеси.

Отличие дизельного двигателя от бензинового

В инжекторных бензиновых двигателях тоже стали применять камеры сгорания, поскольку в них тоже составные части смеси подаются по отдельности.

Юбка является лишь его направляющей в гильзе. При этом нижняя часть ее имеет особую форму, чтобы исключить возможность соприкосновения юбки с шатуном.

Чтобы исключить просачивание продуктов горения в подпоршневое пространство используются поршневые кольца. Они подразделяются на компрессионные и маслосъемные.

В задачу компрессионных входит исключение появления зазора между поршнем и зеркалом, тем самым сохраняется давление в надпоршневом пространстве, которое тоже участвует в процессе.

Если бы компрессионных колец не было, трение между разными металлами, из которых изготавливаются поршень и гильза было бы очень высоким, при этом износ поршня происходил бы очень быстро.

В двухтактных двигателях маслосъемные кольца не применяются, поскольку смазка зеркала производиться маслом, которое добавляется в топливо.

В четырехтактных смазка производится отдельной системой, поэтому чтобы исключить перерасход масла используются маслосъемные кольца, снимающие излишки его с зеркала, и сбрасывая в поддон. Все кольца размещаются в канавках, проделанных в поршне.

Бобышки – отверстия в поршне, куда вставляется палец. Имеют отливы с внутренней части поршня для увеличения жесткости конструкции.

Палец представляет собой трубку значительной толщины с высокоточной обработкой внешней поверхности. Часто, чтобы палец не вышел за пределы поршня во время работы и не повредил зеркало гильзы, он стопориться кольцами, размещающимися в канавках, проделанных в бобышках.

Это конструкция ЦПГ. Теперь рассмотрим устройство кривошипно-шатунного механизма.

Шатун

Итак, состоит он из шатуна, коленчатого вала, посадочных мест этого вала в блоке и крышек крепления, вкладышей, втулки, полуколец.

Шатун – это стержень с отверстием в верхней части под поршневой палец. Нижняя часть его сделана в виде полукольца, которым он садится на шейку кривошипа, вокруг шейки он фиксируется крышкой, внутренняя поверхность ее тоже выполнена в виде полукольца, вместе с шатуном они и формируют жесткое, но подвижное соединение с шейкой – шатун может вращаться вокруг ее. Соединяется шатун со своей крышкой посредством болтовых соединений.

Чтобы снизить трение между пальцем и отверстием шатуна применяется медная или латунная втулка.

По всей длине внутри шатун имеет отверстие, через которое масло подается для смазки соединения шатуна и пальца.

Коленчатый вал

Перейдем к коленчатому валу. Он имеет достаточно сложную форму. Осью его выступают коренные шейки, посредством которых он соединен с блоком цилиндров. Для обеспечения жесткого соединения, но опять же подвижного, в блоке посадочные места вала выполнены в виде полуколец, второй частью этих полуколец выступают крышки, которыми вал поджимается к блоку. Крышки к с блоком соединены болтами.

Коленвал 4-х цилиндрового двигателя

Коренные шейки вала соединены с щеками, которые являются одной из составных частей кривошипа. В верхней части этих щек располагается шатунная шейка.

Количество коренных и шатунных шеек зависит от количества цилиндров, а также их компоновки. В рядных и V-образных двигателях на вал передаются очень большие нагрузки, поэтому должно быть обеспечено крепление вала к блоку, способное правильно распределять эту нагрузку.

Для этого на один кривошип вала должно приходиться две коренные шейки. Но поскольку кривошип размещен между двух шеек, то одна из них будет играть роль опорной и для другого кривошипа. Из этого следует, что у рядного 4-цилиндрового двигателя на валу имеется 4 кривошипа и 5 коренных шеек.

У V-образных двигателей ситуация несколько иная. В них цилиндры расположены в два ряда под определенным углом. Поэтому один кривошип взаимодействует с двумя шатунами. Поэтому у 8-цилиндрового двигателя используется только 4 кривошипа, и опять же 5 коренных шеек.

Уменьшение трения между шатунами и шейками, а также блоком с коренными шейками достигается благодаря использованию вкладышей – подшипников трения, которые помещаются между шейкой и шатуном или блоком с крышкой.

Смазка шеек вала производится под давлением. Для подачи масла применяются каналы, проделанные в шатунных и коренных шейках, их крышках, а также вкладышах.

В процессе работы возникают силы, которые пытаются сместить коленчатый вал в продольном направлении. Чтобы исключить это используются опорные полукольца.

В дизельных двигателях для компенсации нагрузок используются противовесы, которые прикрепляются к щекам кривошипов.

Маховик

С одной из сторон вала сделан фланец, к которому прикрепляется маховик, выполняющий несколько функций одновременно. Именно от маховика передается вращение. Он имеет значительный вес и габариты, что облегчает вращение коленчатому валу после того, как маховик раскрутится. Чтобы запустить двигатель нужно создать значительное усилие, поэтому по окружности на маховик нанесены зубья, которые называются венцом маховика. Посредством этого венца стартер раскручивает коленчатый вал при запуске силовой установки. Именно к маховику присоединяются механизмы, которые и используют вращение вала на выполнение полезного действия. У автомобиля это трансмиссия, обеспечивающая передачу вращения на колёса.

Чтобы исключить осевые биения, коленчатый вал и маховик должны быть хорошо отбалансированы.

Другой конец коленчатого вала, противоположный фланцу маховика используется зачастую для привода остальных механизмом и систем мотора: к примеру, там может размещаться шестерня привода масляного насоса, посадочное место для приводного шкива.

Это основная схема коленчатого вала. Особо нового пока ничего не придумано. Все новые разработки направлены пока только на снижение потерь мощности в результате трения между элементами ЦПГ и КШМ.

Также стараются снизить нагрузку на коленчатый вал путем изменения углов положения кривошипов относительно друг друга, но особо значительных результатов пока нет.

autoleek.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *