Галактики космос – Галактики Вселенной

Галактики Вселенной

Галактики Вселенной

В прошлый раз мы говорили о том, что галактики Вселенной еще в начале прошлого столетия были неизвестны людям. Но сейчас мы знаем богатство их форм и устройства, длинную историю и причудливый нрав — острова звезд мигрируют по космосу, танцуют друг с другом и сливаются вместе. О разнообразии галактик и пойдет сегодня речь.

Что есть галактика?

Галактика часто воображается нами такой, какой традиционно показывается в энциклопедиях и документальных фильмах — громадной спиралью из голубоватого дыма, в котором прячутся гроздья звезд, посередине которой ярко светит ядро. Однако такой «звездный остров» — всего лишь одна разновидность правильных структур. Ведь бывают и неправильные галактики, лишенные выраженных ядер и рукавов — они бултыхаются в космическом пространстве подобно яйцу, разбитому в невесомости. Издали они мало чем отличаются от хаотичных туманностей: разница состоит в размерах и концентрации звезд.

Галактика Андромеды — ближайшая к нам крупная галактика

Итак, что нужно, чтобы назвать объект галактикой?

  • Во-первых, это наличие в ней звезд и звездных скоплений — они составляют львиную долю видимой нам материи галактики. Но только видимой: большую часть массы любой галактики составляют прослойки газа и пыли, молекулярные облака и темная материя.
  • Во-вторых, все это богатство должно быть связано в гравитационной системе и вращаться вокруг общего центра масс. Обычно им выступает галактический центр, о котором речь пойдет дальше — но его отсутствие не препятствие.
  • Кроме внутреннего гравитационного взаимодействия, галактики взаимодействуют между собой. Меньшие «звездные острова» вращаются вокруг больших — а те выстраивают связи с другими гигантами, включаясь в крупномасштабную структуру Вселенной. Но в отличие от планет и их спутников, галактики славятся «хищными» нравами. Наш Млечный путь близок к тому, чтобы через пару миллиардов лет поглотить своих спутников, Большое и Малое Магеллановы Облака — а после этого его «слопает» галактика Андромеды.

spacegid.com

Что такое галактики и как они устроены

Рождение галактик

Галактики появились на свет вскоре после звезд. Считается, что первые светила вспыхнули никак не позднее, чем спустя 150 млн лет после Большого взрыва. В январе 2011 года команда астрономов, обрабатывавших информацию с космического телескопа «Хаббл», сообщила о вероятном наблюдении галактики, чей свет ушел в космос через 480 млн лет после Большого взрыва. В апреле еще одна исследовательская группа обнаружила галактику, которая, по всей вероятности, уже вполне сформировалась, когда юной Вселенной было около 200 млн лет.

Условия для рождения звезд и галактик возникли задолго до его начала. Когда Вселенная прошла возрастную отметку в 400 000 лет, плазма в космическом пространстве заменилась смесью из нейтрального гелия и водорода. Этот газ был еще чересчур горяч, чтобы стянуться в молекулярные облака, дающие начало звездам. Однако он соседствовал с частицами темной материи, изначально распределенными в пространстве не вполне равномерно — где чуть плотнее, где разреженнее. Они не взаимодействовали с барионным газом и потому под действием взаимного притяжения свободно стягивались в зоны повышенной плотности. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака темной материи величиной с нынешнюю Солнечную систему. Они объединялись в более крупные структуры, невзирая на расширение пространства. Так возникли скопления облаков темной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Таким путем появились первые сверхмассивные звезды, которые быстро взрывались сверхновыми и оставляли после себя черные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звезд второго поколения. Такие звезды уже могли существовать миллиарды лет и потому были в состоянии формировать (опять-таки с помощью темной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша.

«Многие детали галактогенеза еще скрыты в тумане, — говорит Джон Корменди. — В частности, это относится к роли черных дыр. Их массы варьируют от десятков тысяч масс Солнца до абсолютного на сегодняшний день рекорда в 6,6 млрд солнечных масс, принадлежащего черной дыре из ядра эллиптической галактики М87, расположенной в 53,5 млн световых лет от Солнца. Дыры в центрах эллиптических галактик, как правило, окружены балджами, составленными из старых звезд. Спиральные галактики могут вовсе не иметь балджей или же обладать их плоскими подобиями, псевдобалджами. Масса черной дыры обычно на три порядка меньше массы балджа — естественно, если оный наличествует. Эта закономерность подтверждается наблюдениями, охватывающими дыры массой от миллиона до миллиарда солнечных масс».

Как полагает профессор Корменди, галактические черные дыры набирают массу двумя путями. Дыра, окруженная полноценным балджем, растет за счет поглощения газа, который приходит к балджу из внешней зоны галактики. Во время слияния галактик интенсивность поступления этого газа резко возрастает, что инициирует вспышки квазаров. В результате балджи и дыры эволюционируют параллельно, что и объясняет корреляцию между их массами (правда, могут работать и другие, еще неизвестные механизмы).

Исследователи из Питтсбургского университета, Калифорнийского университета в Ирвине и Атлантического университета Флориды смоделировали ситуацию столкновения Млечного пути и предшественницы карликовой эллиптической галактики в Стрельце (Sagittarius Dwarf Elliptical Galaxy, SagDEG). Они проанализировали два варианта столкновений — с легкой (3х1010 масс Солнца) и тяжелой (10

11 масс Солнца) SagDEG. На рисунке показаны результаты 2,7 млрд лет эволюции Млечного пути без взаимодействия с карликовой галактикой и с взаимодействием с легким и тяжелым вариантом SagDEG.

Иное дело безбалджевые галактики и галактики с псевдобалджами. Массы их дыр обычно не превышают 104−106 солнечных масс. По мнению профессора Корменди, они подкармливаются газом за счет случайных процессов, которые происходят недалеко от дыры, а не простираются на целую галактику. Такая дыра растет вне зависимости от эволюции галактики или ее псевдобалджа, чем и обусловлено отсутствие корреляции между их массами.

Растущие галактики

Галактики могут увеличивать и размер, и массу. «В далеком прошлом галактики делали это гораздо эффективней, нежели в недавние космологические эпохи, — объясняет профессор астрономии и астрофизики Калифорнийского университета в Санта-Круз Гарт Иллингворт. — Темпы рождения новых звезд оценивают в терминах годового производства единицы массы звездного вещества (в этом качестве выступает масса Солнца) на единицу объема космического пространства (обычно это кубический мегапарсек). Во времена формирования первых галактик этот показатель был весьма невелик, а затем пошел в быстрый рост, продолжавшийся до тех пор, пока Вселенной не исполнилось 2 млрд лет. Еще 3 млрд лет он был относительно постоянным, потом начал снижаться почти пропорционально времени, и снижение это продолжается по сей день. Так что 7−8 млрд лет назад средний темп звездообразования в 10−20 раз превышал современный. Большинство доступных наблюдению галактик уже полностью сформировались в ту далекую эпоху».

На рисунке — результаты эволюции в различные моменты времени — начальная конфигурация (a), через 0,9 (b), 1,8 © и 2,65 млрд лет (d). Согласно модельным расчетам, бар и спиральные рукава Млечного Пути могли сформироваться в результате столкновений с SagDEG, которая изначально тянула на 50−100 миллиардов солнечных масс. Дважды она проходила сквозь диск нашей Галактики и теряла часть своей материи (и обычной, и темной), вызывая пертурбации его структуры. Нынешняя масса SagDEG не превышает десятков миллионов солнечных масс, и очередное столкновение, которое ожидают не позже, чем через 100 миллионов лет, скорее всего, станет для нее последним.

В общих чертах эта тенденция понятна. Галактики увеличиваются двумя основными способами. Во‑первых, они получают свежий материал для звездообразования, втягивая из окружающего пространства газ и частицы пыли. В течение нескольких миллиардов лет после Большого взрыва этот механизм исправно работал просто потому, что звездного сырья в космосе хватало всем. Потом, когда запасы истощились, темп звездного рождения упал. Однако галактики нашли возможность увеличивать его за счет столкновения и слияния. Правда, для реализации этого варианта необходимо, чтобы сталкивающиеся галактики располагали приличным запасом межзвездного водорода. Крупным эллиптическим галактикам, где его практически не осталось, слияние не помогает, зато в дисковидных и неправильных оно работает.

Курс на столкновение

Посмотрим, что происходит при слиянии двух примерно одинаковых галактик дискового типа. Их звезды практически никогда не сталкиваются — слишком велики расстояния между ними. Однако газовый диск каждой галактики ощущает приливные силы, обусловленные притяжением соседки. Барионное вещество диска теряет часть углового момента и смещается к центру галактики, где возникают условия для взрывного роста скорости звездообразования. Часть этого вещества поглощается черными дырами, которые тоже набирают массу. В заключительной фазе объединения галактик черные дыры сливаются, а звездные диски обеих галактик теряют былую структуру и рассредоточиваются в пространстве. В итоге из пары спиральных галактик образуется одна эллиптическая. Но это отнюдь не полная картина. Излучение молодых ярких звезд способно выдуть часть водорода за пределы новорожденной галактики. В то же время активная аккреция газа на черную дыру вынуждает последнюю время от времени выстреливать в пространство струи частиц огромной энергии, подогревающие газ по всей галактике и тем препятствующие формированию новых звезд. Галактика постепенно затихает — скорее всего, навсегда.

www.popmech.ru

Статьи о Космосе | Галактики

Галактика — это огромное скопление звезд, звездных систем, межзвёздного газа и пыли, тёмной материи, связанные гравитацией в единую систему. Все объекты в составе галактики участвуют в движении относительно общего центра масс. Галактики — это невообразимо далекие астрономические объекты, расстояние до ближайших из них принято измерять в мегапарсеках, а до далёких — в единицах красного смещения z.

Как правило галактики содержат от нескольких миллионов до нескольких триллионов звезд. Кроме обычных звезд и межзвездной среды галактики также содержат различные туманности. Размеры галактик от нескольких тысяч до нескольких сотен тысяч световых лет. А расстояние между галактиками достигает миллионов световых лет.

Около 90 % массы галактик приходится на долю темной материи и энергии. Природа этих невидимых компонентов пока не изучена. Существуют свидетельства того, что в центре многих галактик находятся сверхмассивные чёрные дыры. Пространство между галактиками практически не содержит вещества и имеет среднюю плотностью меньше одного атома на кубический метр. Предположительно, в видимой части вселенной находится около 100 млрд. галактик.

По классификации, предложенной Хабблом в двадцатых годах 20 века существуют несколько видов галактик:

— эллиптические(E),

— линзообразные(S0),
— обычные спиральные(S),
— пересеченные спиральные или спиральные с перемычкой (SB),
— неправильные (Ir).

Эллиптические галактики

На фото: карликовая эллиптическая галактика в созвездии Андромеды М32. По Фабблу классифицирована как E2. М32 означает, что галактика зарегистрирована в каталоге Мессье под номером 32

Эллиптические галактики (E) — класс галактик с четко выраженной сферической структурой и уменьшающейся к краям яркостью. Они выглядят как нерезкий круг или эллипс, яркость которого быстро уменьшается от центра к периферии. Полагают, что в центре ярких эллиптических галактик находится массивная черная дыра. Размеры эллиптических галактик колеблются от нескольких пк до более 100 кпк*

[* кпк — килопарсек=1000 парсек. Парсек (пк) = 30,8568 трлн км (петаметров) = 3,2616 светового года.]

По форме эллиптические галактики очень разнообразны: бывают как шаровые, так и очень сплюснутые. В связи с этим они подразделены на 8 подклассов — от Е0 (круглая) до Е7 (сплюснутая).

Это наиболее простые по структуре галактики. Состоят, преимущественно, из звёзд следующих типов: старых красных и желтых гигантов, красных, желтых и белых карликов. Образование звезд в галактиках этого типа не происходит уже несколько миллиардов лет. Холодного газа, как и космической пыли почти нет; наиболее массивные галактики заполнены очень разреженным горячим газом с температурой более 1 000 000 К*, поэтому цвет этих галактик красноватый. Вращение обнаружено лишь у наиболее сжатых из эллиптических галактик.

[* K — Кельвин — единица измерения температуры.0 К = -272.15 градусов С ; 1 000 000 К = 999 726,85 С ]

Примерами эллиптических галактик служат галактики M32, M87 и M110.

Линзовидные галактики

На фото: эллиптическая галактика Верено (иначе: NGC 5866, MCG 9-25-17, ZWG 274.16) . Галактика наблюдается практически с ребра, что позволяет видеть тёмные области космической пыли, находящиеся в галактической плоскости. Находится на расстоянии примерно в 44 млн световых лет.

Линзовидные галактики похожи на эллиптические, но, кроме сфероидального компонента, имеют тонкий быстро вращающийся экваториальный диск, иногда с кольцеобразными структурами наподобие колец Сатурна. Линзовидные галактики практически не содержат газа и пыли. Поэтому процесс звездообразования происходит слишком медленно. Такие галактики состоят в основном из старых красноватых звезд-гигантов. По классификации Хаббла линзовидными являются классы S0, SB1, E8.

Спиральные галактики


На фото: спиральная галактика Андромеды M31 типа Sb. Ближайшая галактика Млечного Пути. Содержит примерно 1 триллион звёзд.

Спиральные галактики (S) — самый многочисленный тип — составляют около 50 % всех наблюдаемых галактик. Чаще всего наблюдаются за пределами скоплений галактик. Спиральная галактика состоит из почти сферического балджа (центр), окруженного плоским вращающимся диском, который, в свою очередь, окружен сферическим гало, диаметром близким к диаметру диска. Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающиеся сходным, симметричным образом и теряющиеся в противоположных областях периферии галактики. Однако известны примеры большего, чем двух, числа спиральных ветвей в галактике. В других случаях спирали две, но они неравноправны — одна значительно более развита, чем другая.

Спиральные галактики с перемычкой (SB)— спиральные галактики с перемычкой из ярких звёзд, выходящей из центра и пересекающей галактику посередине. Спиральные ветви в таких галактиках начинаются на концах перемычек, тогда как в обычных спиральных галактиках они выходят непосредственно из ядра. Перемычка еще называется «бар». К ним, кстати, относится и наша Галактика Млечный Путь.

Спиральные галактики по Хабблу распределяются на категории a b с. Например:

Галактики Sa и SBa — галактики, у которых ветви развиты слабо, в некоторых случаях только намечаются. Ядра у таких галактик всегда большие, обычно составляют около половины наблюдаемого размера самой галактики. Из спиральных галактик Sa наименее выразительны, в них есть черты эллиптических галактик. Примером галактики типа Sa является NGC 3898. Эта галактика расположена в созвездии Большой Медведицы.

Следующий подкласс — Sb и SBb. У галактик этого типа спиральные ветви уже заметно развиты, но не имеют богатых разветвлений. Ядра меньше, чем у Sa. Примерами Sb могут служить галактики NGC 488, NGC 3521 и NGC 6384. Для этих трех галактик характерна множественность спиральных ветвей. В отличие от них, у галактики NGC 210, также типа Sb, только две легко выраженные почти не разветвленные спиральные ветви. Галактикой Sb является также известная туманность Андромеды (NGC 224).

Sc и SBc — Галактики с сильно развитыми, разделяющимися на несколько рукавов ветвями и малым в сравнении с ними ядром относятся к типу Sс . Яркими примерами спиралей типа Sc являются NGC 628, NGC 1232 и NGC 157.

Спиральные галактики, наблюдаются нами либо в плане, либо в три четверти. А как же выглядят спиральные галактики, если наблюдать их с ребра?

У всех спиральных галактик, наблюдаемых с ребра, видна темная полоса, как бы разделяющая галактику на две части. В нашей Галактике около ее плоскости симметрии сосредоточена темная пылевая материя, поэтому внегалактический наблюдатель, рассматривая Галактику с ребра, тоже должен видеть темную полосу, как бы разделяющую Галактику на две части. Следовательно, темная полоса, наблюдаемая в других спиральных галактиках, показывает, что и в них, как в нашей Галактике, имеется темная пылевая материя, сосредоточенная около плоскости симметрии.

Рукава спиральных галактик имеют голубоватый цвет, так как в них присутствует много молодых гигантских звёзд. Эти звёзды возбуждают свечение диффузных газовых туманностей, разбросанных вместе с пылевыми облаками вдоль спиральных ветвей. Цвет центральных сгущений — красновато-жёлтый, свидетельствующий о том, что они состоят в основном из звёзд спектральных классов G, K и M. Все спиральные галактики вращаются со значительными скоростями, поэтому звёзды, пыль и газы сосредоточены у них в узком диске. Вращение в подавляющем большинстве случаев происходит в сторону закручивания спиральных ветвей.

Неправильные галактики

На фото: галактика в созвездии Эридан NGC 1427A(другие обозначения — ESO 358-49, MCG −6-9-16, AM 0338-354, FCC 235, PGC 13500). Она находится на расстоянии 62 млн световых лет от Земли, входя в Скопление Печи. В галактику NGC 1427A входит большое число молодых горячих голубых звёзд, что свидетельствует об интенсивном формировании новых звёзд.

Неправильные галактики — это галактики, которые не обнаруживают ни спиральной ни эллиптической структуры. Чаще всего такие галактики имеют хаотичную форму без ярко выраженного ядра и спиральных ветвей. В процентном отношении составляют одну четверть от всех галактик. Большинство неправильных галактик в прошлом являлись спиральными или эллиптическими, но были деформированы гравитационными силами.

Существует два больших типа неправильных галактик:

1. Неправильные галактики первого типа (Irr I) представляют собой неправильные галактики, имеющие намеки на структуру, которых, однако, не достаточно, чтобы отнести их к последовательности Хаббла. Существует два подтипа таких галактик — обнаруживающих подобие спиральной структуры (Sm), и с отсутствием таковой (Im).

2. Неправильные галактики второго типа (Irr II) — это галактики, не имеющие никаких особенностей в своей структуре, позволяющих отнести их к последовательности Хаббла.

Третий подтип неправильных галактик — так называемые карликовые неправильные галактики, обозначаемые как dI или dIrrs. Этот тип галактик в настоящее время считается важным звеном в понимании общей эволюции галактик. Вызвано это тем, что они обнаруживают тенденцию низкого содержания металлов и экстремально высокого содержания газа и поэтому подразумеваются схожими с самыми ранними галактиками, заполнявшими Вселенную.


www.mysterylife.ru

Истинные размеры космоса или сколько галактик во Вселенной . Чёрт побери

Окружающее нас космическое пространство – это не просто одинокие звезды, планеты, астероиды и кометы, сверкающие на ночном небосклоне. Космос представляет собой огромную систему, где все находится в тесном взаимодействии друг с другом. Планеты группируются вокруг звезд, которые в свою очередь собираются в скопление или в туманность. Эти образования могут быть представлены одиночными светилами, а могут и насчитывать сотни, тысячи звезд, формируя уже более масштабные вселенские образования – галактики. Наша звездная страна, галактика Млечный путь, является только малой частью бескрайней Вселенной, в которой помимо этого существуют и другие галактики.

Звездное небо

Вселенная постоянно находится в движении. Любой объект в космосе входит в состав той или иной галактики. Следом за звездами перемещаются и галактики, каждая из которых имеет свои размеры, определенное место в плотном вселенском строю и свою траекторию движения.

Человек сумел подсчитать количество звезд на небосклоне, а вот определить, сколько галактик во Вселенной — задача архисложная, как технически, так и теоретически.

Какова реальная структура Вселенной?

Долгое время научные представления человечества о космосе строились вокруг планет Солнечной системы, звезд и черных дыр, населяющих наш звездный дом – галактику Млечный путь. Любой другой галактический объект, обнаруживаемый в космосе с помощью телескопов, автоматически вносился в структуру нашего галактического пространства. Соответственно отсутствовали представления о том, что Млечный Путь — не единственное вселенское образование.

Эдвин Хаббл

Ограниченные технические возможности не позволяли заглянуть дальше, за пределы Млечного Пути, где по устоявшемуся мнению начинается пустота. Только в 1920 году американский астрофизик Эдвин Хаббл сумел найти доказательства того, что Вселенная значительно больше и наряду с нашей галактикой в этом огромном и бескрайнем мире существуют другие, большие и маленькие галактики. Реальной границы Вселенной не существует. Одни объекты расположены к нам достаточно близко, всего несколько миллионов световых лет от Земли. Другие наоборот, расположены в дальнем углу Вселенной, пребывая вне зоны видимости.

Прошло почти сто лет и количество галактик сегодня уже оценивается в сотни тысяч. На этом фоне наш Млечный путь выглядит совсем не таким огромным, если не сказать, совсем крохотным. Сегодня уже обнаружены галактики, размеры которых трудно поддаются даже математическому анализу. К примеру, самая большая галактика во Вселенной IC 1101 имеет диаметр 6 миллионов световых лет и состоит из более 100 триллионов звезд. Этот галактический монстр находится на расстоянии более миллиарда световых лет от нашей планеты.

Сравнение размеров

Структура такого огромного образования, каковым является Вселенная в глобальном масштабе, представлена пустотой и межзвездными образованиям — волокнами. Последние в свою очередь делятся на сверхскопления, межгалактические скопления и галактические группы. Самым малым звеном этого огромного механизма является галактика, представленная многочисленными звездными скоплениями — рукавами и газовыми туманностями. Предполагается, что Вселенная постоянно расширяется, заставляя тем самым двигаться галактики с огромной скоростью по направлению от центра Вселенной к периферии.

Если представить, что мы наблюдаем за космосом из нашей галактики Млечный Путь, которая якобы находится в центре мироздания, то крупномасштабная модель структуры Вселенной будет иметь следующий вид.

Структура Вселенной

Темная материя — она же пустота, сверхскопления, скопления галактик и туманности — это все последствия Большого взрыва, который положил начало образованию Вселенной. В течение миллиарда лет происходит трансформация ее структуры, меняется форма галактик, так как одни звезды исчезают, поглощенные черными дырами, а другие наоборот, трансформируются в сверхновые, становясь новыми галактическими объектами. Миллиарды лет назад в расположение галактик было совсем другое, чем мы наблюдаем сейчас. Так или иначе, на фоне постоянных астрофизических процессов, происходящих в космосе, можно сделать определенные выводы о том, что наша Вселенная имеет не постоянную структуру. Все космические объекты находятся в постоянном движении, меняя свое положение, размеры и возраст.

Телескоп Хаббл

На сегодняшний день благодаря телескопу Хаббл удалось обнаружить месторасположение наиболее близких к нам галактик, установить их размеры и определить местоположение относительного нашего мира. Стараниями астрономов, математиков и астрофизиков составлена карта Вселенной. Выявлены одиночные галактики, однако в большинстве своем, такие крупные вселенские объекты группируются по несколько десятков в группе. Средний размер галактик в такой группе составляет 1-3 млн. световых лет. Группа, к которой относится наш Млечный Путь, насчитывает 40 галактик. Помимо групп в межгалактическом пространстве имеется огромное количество карликовых галактик. Как правило, такие образования являются спутниками более крупных галактик, как наш Млечный путь, Треугольник или Андромеда.

Состав Вселенной

Шаги на пути изучения Вселенной

Современная карта Вселенной позволяет нам не только определить свое местоположение в космосе. Сегодня, благодаря наличию мощных радиотелескопов и техническим возможностям телескопа Хаббл, человек сумел не только приблизительно подсчитать количество галактик во Вселенной, но и определить их типы и разновидности. Еще в 1845 году британский астроном Уильям Парсонс, с помощью телескопа исследуя облака газа, сумел выявить спиралевидную природу строения галактических объектов, акцентируя внимания на том, что в разных областях яркость звездных скоплений может быть большей или меньшей.

 

Сто лет назад Млечный Путь считался единственной известной галактикой, хотя математически было доказано наличие других межгалактических объектов. Свое название наш космический двор получил еще в глубокой древности. Древние астрономы глядя на мириады звезд на ночном небе, заметили характерную особенность их расположения. Основное скопление звезд было сосредоточено вдоль мнимой линии, напоминающей дорожку из разбрызганного молока. Галактика Млечный Путь, небесные светила другой хорошо знакомой галактики Андромеда являются самыми первыми вселенскими объектами, с которых началось изучение космического пространства.

Звездные соседи

Галактики с перемычкой

С перемычкой галактики встречаются значительно реже. На них приходится примерно половины всех спиральных галактик. В отличие от спиральных образований, в таких галактиках начало берется из перемычки, называемой баром, вытекающей из двух самых ярких звезд, расположенных в центре. Ярким примером такого образования является наш Млечный Путь и галактика Большое Магелланово Облако. Ранее это образование относили к неправильным галактикам. Появление перемычки является на данный момент одной из основных областей исследования в современной астрофизике. По одной из версий, близко расположенная черная дыра высасывает и поглощает газ из соседних звезд.

Самые красивые галактики во Вселенной относятся к типу спиральных и неправильных галактик. Одной из самых красивых является галактика Водоворот, расположенная в небесном созвездии Гончие Псы. В данном случае отчетливо видны центр галактики и спирали, вращающиеся в одном направлении. Неправильные галактики представляют собой хаотически расположенные сверхскопления звезд, не имеющие четкой структуры. Ярким примером такого образования является галактика под номером NGC 4038, расположенная в созвездии Ворон. Здесь наряду с огромными газовыми облаками и туманностями можно увидеть полное отсутствие порядка в расположении космических объектов.

Галактика Водоворот

Выводы

Изучать Вселенную можно бесконечно. Каждый раз, с появлением новых технических средств, человек приоткрывает завесу космоса. Галактики являются самыми непостижимыми для человеческого разума объектами в космическом пространстве, как с психологической точки зрения, так и оглядываясь на науку.

chert-poberi.ru

Космос, вселенная, галактики и звезды

  Тайваньский уфолог Скотт Уоринг выступил с заявлением о новых инопланетных строениях, обнаруженных им на поверхности Луны. Свое открытие он сделал, изучив спутниковые снимки NASA.

  Международная группа астрономов недавно сделала важное открытие. В центре Млечного Пути ученые обнаружили структуры гигантского размера.

  До последнего времени считалось, что существует лишь один НЛО, который находится рядом с Землей и ведет постоянное наблюдение за деятельностью земных жителей. Его назвали «Черным принцем», а впервые он был зафиксирован 70 лет назад. Какое-то время эксперты пребывали в замешательстве…

Один из пользователей видеосервиса YouTube выложил у себя на канале The Grimreefar видеоролик, демонстрирующий НЛО в виде гигантского стрежня в непосредственной близости от Солнца.

Авторитетный уфолог Скотт Уоринг обнаружил новый интересный объект на фотографиях NASA. Речь идет о гигантском НЛО, который по форме напоминает ангела. Уоринг утверждает, что инопланетный звездолет движется по направлению к нашей планете.

  Странный летающий объект, величина которого больше нашей планеты, был замечен возле Солнца. На этот феномен обратил внимание авторитетный уфолог Скотт Уоринг.

  Официальные ученые часто игнорируют факты появления неопознанных летающих объектов. Между тем исследователи-энтузиасты уделяют таким находкам самое пристальное внимание.

  Эксперты по НЛО выложили в Интернет запись эфира Международной космической станции (МКС). Они указывают на тот факт, что в объективы бортовых камер попали целых 7 летательных аппаратов пришельцев.

  Уфологи то и дело находят на изображениях Луны странные объекты, которые выглядят чужеродными на безжизненном ландшафте спутника. На сей раз находку в виде черного прямоугольника представил ведущий Youtube-канала Streetcap1. Таинственная аномалия присутствовала на трех фотографиях. Есть предположение, что эта структура…

  По заверениям специалистов, новая запись с камер МКС продемонстрировала громадный космический корабль, принадлежащий инопланетным существам. В подтверждение своих слов уфологи выложили на видеохостинге ролик, демонстрирующий качественное изображение НЛО.

  Ученые США, проведя серию научных исследований, пришли к выводу, что звезды постоянно поглощаются черными дырами. Количество исчезнувших звезд определить сложно, но оно связано с активностью черных дыр и их положением в космосе.

  Конспирологи говорят, что планета Нибиру вскоре появится в поле зрения землян. Долгие годы о загадочном небесном теле спорят ученые, но увидеть ее никому не доводилось. Сейчас таинственный объект приближается к нашей планете, и человечество сможет увидеть его своими глазами.

  В блоге авторитетного уфолога Скотта Уоринга появилась новость о сенсационной находке. На свежих марсианских снимках, обнародованных NASA, были найдены изображения зубов неизвестных ископаемых животных.

  Просматривая фотоснимки поверхности Красной планеты, эксперты по НЛО нашли структуру, форма которой повергла их в легкое замешательство. Объект, обнаруженный на одной марсианской фотографии, имел вид египетской пирамиды. При этом строение имело идеальную форму.

  Камеры Международной космической станции запечатлели золотистый летательный аппарат, который плавно перемещался над Землей. Запись вызвала новую волну дискуссий о заговоре NASA, скрывающего информацию от землян.

  Предположение о двух светилах в Солнечной системе кажется совершенно фантастическим. Однако исследователь по имени Пол Кокс настаивает на существовании двух Солнц.

  Анонимный пользователь Интернета опубликовал в Сети видеозапись, демонстрирующую взлет с лунной поверхности неизвестного космического аппарата. На данный момент неизвестно, откуда появилась в Сети эта запись и кто ее автор. Но ролик, гуляющий по соцсетям, подлинный и сделан с применением телескопа.

  Эксперты по НЛО из Китая сделали открытие на основании фотоснимков с Луны, обнародованных аэрокосмическим агентством NASA. Внимание уфологов привлек необычный объект, в котором уфологи признали пришельца с кислородной маской на голове.

  Специалисты по аномальным явлениям обнародовали сведения о таинственных прямоугольных конструкциях, найденных на просторах Марса. Фотографии с сенсационными изображениями выложил в сеть эксперт по НЛО Жан Варден. Снимки Красной планеты были сделаны исследовательским модулем Mars Global Surveyor.

На одном из каналов Youtube выложен видеофрагмент, демонстрирующий подозрительный космический модуль в форме овала на поверхности Солнца. Зрители проявили к ролику неподдельный интерес и задали вопрос автору, каким образом он сумел снять на Солнце НЛО.

  Исследователи из США выступили с шокирующим заявлением. По их словам, инопланетяне начали активно использовать гамма-лучи в направлении Земли. По мнению ученых, это говорит о стремлении пришельцев выйти на контакт с землянами и представителями иных разумных космических сообществ.

  Уфологи продолжают вести мониторинг прямых трансляций с камер Международной космической станции. Январские записи 2018 года принесли несколько новых открытий. На одном из видеофрагментов возле МКС был зафиксирован летающий объект, от которого периодически исходили вспышки света. Из-за этого мерцания уфологи дали…

deepkosmos.ru

Космос, галактики, звезды

В ясную погоду можно насчитать на небосводе до трех тысяч звезд. Но это лишь очень небольшая часть тех звезд и других космических объектов, которые существуют в нашей области мира.

В безлунные ночи хорошо виден Млечный Путь, протянувшийся от одной стороны горизонта до другой. Он кажется скоплением светящихся туманных масс. Но стоит направить на Млечный Путь телескоп, и мы сразу обнаружим, что он состоит из множества звезд. Эта звездная система, к которой принадлежит и наше Солнце, получила название Галактики

Изучать нашу Галактику необычайно сложно. Это одна из труднейших задач науки. Ведь мы находимся внутри этой Галактики и не можем ни вылететь за ее пределы, ни побывать в различных ее точках. Тем не менее, наука преодолевает эти трудности.

И сегодня мы уже достаточно уверенно можем говорить о том, как же выглядит наш звездный остров. В центре его находится ядро, окруженное множеством звезд. От него отходит несколько могучих спиральных ветвей.

Наша Галактика столь велика, что ее размеры нелегко себе представить: от одного ее края до другого световой луч путешествует около 100 тысяч земных лет.

Большая часть звезд нашей Галактики сосредоточена в гигантском «диске» толщиной около 1500 световых лет. На расстоянии около 30 тысяч световых лет от центра Галактики расположено наше Солнце.

Основное «население» Галактики — звезды. Мир этих небесных тел необыкновенно разнообразен. И хотя все звезды — раскаленные шары, подобные Солнцу, их физические характеристики различаются весьма существенно. Есть, например, звезды гиганты и сверхгиганты. По своей величине они значительно превосходят Солнце.

Еще большей плотностью обладают так называемые нейтронные звезды. Нейтронная звезда — это громадное атомное ядро. Существование нейтронных звёзд было теоретически предсказано еще в 30-х годах. Однако обнаружить их удалось только в 1967 году по необычному импульсному радиоизлучению.

Звезды обладают различными поверхностными температурами — от нескольких тысяч до десятков тысяч градусов. Различен и цвет звезд. Сравнительно «холодные» звезды — с температурой около 3-4 тыс. градусов — красноватого цвета. Наше Солнце, поверхность которого «нагрета» до 6 тысяч градусов, обладает желто-зеленым цветом. Самые горячие звезды — с температурой, превосходящей 10 — 12 тысяч градусов, — белые и голубоватые.

Температура поверхности Солнца составляет около 6000 C0.

Звезды обычно кажутся нам неподвижными. Но это лишь видимость. Так, нам кажется, что Солнце движется по небу относительно неподвижной Земли, а на самом деле наша планета вращается вокруг дневного светила. Нам кажется, что Солнце и Луна имеют примерно одинаковые размеры, а в действительности Солнце во много раз больше естественного спутника Земли, но расположено гораздо дальше Луны.

Движутся и звезды. Но для того чтобы заметить их перемещение, надо сравнивать положение звезд на небе через достаточно длительные промежутки времени, например через десятки лет.

Один из самых грандиозных физических процессов во Вселенной — вспышки так называемых новых и сверхновых звезд. В действительности звезда существует и до вспышки. Но в какой-то момент под действием бурных физических процессов такая звезда неожиданно увеличивается в объеме, «раздувается», сбрасывает свою газовую оболочку и в течение нескольких суток выделяет чудовищную энергию, светя, как миллиарды солнц. Затем, исчерпав свои ресурсы, эта звезда постепенно тускнеет, а на месте вспышки остается газовая туманность.

Наше Солнце — «одинокая» звезда. Она лишена подобных себе горячих спутников. Но во Вселенной есть двойные, тройные и более сложные звездные системы, члены которых связаны друг с другом силами взаимного притяжения и обращаются вокруг общего центра масс. Некоторые скопления содержат десятки, сотни и тысячи звезд. А число звезд в больших шаровых скоплениях достигает даже сотен тысяч.

Межзвездное пространство тоже не пусто. Оно заполнено газовыми и пылевыми частицами, которые в некоторых местах образуют гигантские облака — туманности, светлые и темные.

Звезды, составляющие Галактику, движутся вокруг ее центра по очень сложным орбитам. С огромной скоростью — около 250 км/сек. несется в мировом пространстве и наше Солнце, увлекая за собой свои планеты. Солнечная система совершает один полный оборот вокруг галактического центра за 180 млн. лет.

Ближайшие к нашей Галактике звездные системы удалены от нас на расстояние около 150 тыс. световых лет. Они видны на небе Южного полушария как маленькие туманные пятнышки.

Наша Галактика и другие соседние звездные системы образуют Местную систему галактик. В ее состав входит 16 галактик, а поперечник ее равен 2 млн. световых лет. Исследования показывают, что звездные острова, галактики — типичные объекты Вселенной. Астрономам теперь известно великое множество галактик во всех участках небесной сферы.

Галактики имеют разнообразную форму и строение. Есть галактики шаровые и эллиптические, галактики в форме диска, спиралевидные, подобно нашей, наконец, галактики неправильной формы. В области, доступной современным средствам астрономических исследований, насчитываются миллиарды галактик. Их совокупность ученые назвали Метагалактикой.

Вселенная — это вовсе не простая совокупность небесных тел, в ней постоянно происходят чрезвычайно сложные и многообразные физические процессы.

И именно с этой точки зрения изучение Вселенной представляет наибольший интерес для современного естествознания. Космос — бесконечно разнообразная лаборатория, где можно изучать такие состояния материи, такие физические условия и процессы, которые недостижимы у нас на Земле.

Стремительный прогресс науки и техники в период научно — технической революции, современниками которой мы являемся, ведет ко все новым и новым открытиям, все более глубокому проникновению в самые сокровенные тайны природы, к дальнейшему познанию фундаментальных законов мироздания. И Вселенная в наше время становится все более важным источником уникальной информации о явлениях природы.

Галактики разбегаются от нас во всех направлениях и, чем дальше находится та или иная галактика, тем с большей скоростью она движется. Происходит общее расширение Метагалактики, которое совершается таким образом, что скорость взаимного удаления двух звездных систем тем выше, чем больше расстояние между ними.

Картину взаимного разбегания галактик можно мысленно повернуть вспять, и тогда мы придем к выводу, что в отдаленном прошлом, около 15-20 миллиардов лет назад, материя находилась в ином состоянии, нежели в нашу эпоху. Тогда не было еще ни звезд, ни планет, ни туманностей, ни галактик. Вся материя была сосредоточена в очень плотном компактном сгустке горячей плазмы — смеси элементарных частиц вещества и излучения. Затем произошел взрыв этого сгустка и началось его расширение, в процессе которого образовались сначала атомы, а затем звезды, галактики и все другие космические объекты.

Так возникла теория расширяющейся Вселенной — одна из наиболее впечатляющих научных теорий XX столетия. Представления о неизменной, стационарной Вселенной уступили место новым представлениям о Вселенной, меняющейся с течением времени. Это был новый, чрезвычайно важный шаг в познании свойств окружающего нас мира. Дальнейшие исследования показали, что различные нестационарные явления вообще играют важную роль в современной Вселенной.

Теория предсказывала, что, когда в процессе расширения температура среды упадет до нескольких тысяч градусов, она станет прозрачной для электромагнитных волн. Тогда электромагнитное излучение как бы «оторвется» от вещества и постепенно заполнит все пространство Вселенной. И действительно, в середине 60-х годов реликтовое излучение удалось зарегистрировать.

Исследование его физических свойств показало, что первоначальное вещество действительно обладало чрезвычайно высокой температурой. Тем самым было получено наблюдательное подтверждение справедливости теории горячей расширяющейся Вселенной. Существование реликтового излучения — очень важное, решающее подтверждение того фундаментального факта, что мы, в самом деле, живем в расширяющейся Метагалактике.

Следовательно, Вселенная не всегда была такой, как в современную эпоху. Она изменяется с течением времени; ее прошлое не тождественно настоящему, а настоящее — будущему. Таким образом, когда-то нашей Вселенной вообще не существовало, хотя и тогда была материя, из которой она впоследствии образовалась. Материальный мир вечен, а Вселенная — его часть, выделенная человеком. В процессе своей познавательной и практической деятельности человек выделяет, вычленяет из бесконечно разнообразного материального мира определенные объекты, явления, связи, взаимодействия. Это как бы конечный «срез» бесконечно разнообразного мира — наша Вселенная, или, как ее иногда называют Вселенная естествоиспытателя.

Если в первой половине XX столетия астрофизики интересовались главным образом изучением тех свойств космических объектов, которые характеризуют их современное состояние, то в последние десятилетия астрофизика превратилась в эволюционную науку, в центре внимания которой находятся закономерности происхождения и развития космических объектов.

Если мы будем знать закономерности эволюционных процессов, то сможем прогнозировать развитие космических явлений и будущие состояния космических объектов, исходя из их современных состояний. А это задача, имеющая не только чисто теоретическое, но и огромное практическое значение: ведь в физическом отношении мы сами являемся частью Вселенной и наше существование тесно связано с «космической обстановкой».

В современной астрофизике существуют две основные концепции по возникновению и развитию космических объектов. Одна из них, наиболее распространенная, — ее часто называют «классической» — исходит из того, что космические объекты образуются в результате сгущения конденсации рассеянного диффузного вещества — газа и пыли. Согласно другой концепции, развиваемой известным советским ученым академиком В. А. Амбарцумяном, космические объекты возникают в результате распада на части, фрагментации плотных или сверхплотных «прототел», сгустков «дозвездного» вещества. Какая из этих гипотез более справедлива — покажут будущие исследования.

В 1963 году на очень больших расстояниях от нашей Галактики, на границах наблюдаемой Вселенной, были обнаружены удивительные объекты, получившие впоследствии название квазаров. При сравнительно небольших размерах, квазары выделяют колоссальную энергию, примерно в 100 раз превосходящую энергию излучения самых гигантских галактик, состоящих из десятков и сотен миллиардов звезд.

Оказывается, чем дальше от нас находится тот или иной космический объект, тем в более отдаленном прошлом мы его наблюдаем. Это связано с конечной скоростью распространения света. Хотя она и составляет 300 тысяч км/сек. даже при такой огромной скорости для преодоления космических расстояний необходимы долгие годы, десятки, сотни, миллионы и миллиарды лет. Поэтому, глядя на небо, мы видим космические объекты — Солнце, планеты, звезды, галактики в прошлом. Причем различные объекты — в разном прошлом. Например, Полярную звезду — такой, какой она была около шести веков назад.

Все это говорит о том, что излучение квазаров и активность ядер галактик связаны со сходными физическими процессами. Однако вопрос о природе этих процессов все еще остается открытым.

Еще один очень интересный вопрос, связанный с изучением Вселенной, — геометрические свойства пространства, его конечность или бесконечность. Эту проблему пытались решить еще великие философы древности.

В прошлом понятие Вселенной отождествлялось с понятием материального мира. И когда речь шла о конечности или бесконечности Вселенной, то фактически рассматривался вопрос о конечности или бесконечности материальною мира.

На протяжении истории науки представления о геометрических свойствах пространства менялись не раз. Аристотель и Птолемей ограничивали мир «сферой неподвижных звезд», классическая физика Ньютона, наоборот, приходила к выводу о бесконечности мирового пространства. И лишь с возникновением теории относительности А. Эйнштейна появилась возможность более глубоко разобраться в существе этой проблемы. Если физика Ньютона рассматривала пространство как простое вместилище небесных тел, то А. Эйнштейну удалось вскрыть тесную связь между геометрией пространства и материей.

Таким образом, пространство, в котором мы живем, искривлено. А в искривленном мире «неограниченность» и «бесконечность» — не одно и то же. Оказывается, неограниченное пространство, то есть пространство, не имеющее «края», границы, в то же время может быть конечным, как бы замкнутым в себе.

Что касается мирового пространства, то его неограниченность не вызывает сомнения. Мир — это материя, а материя не может иметь границ в том смысле, что за материальным миром может располагаться нечто нематериальное. И это, разумеется, принципиальный философский вопрос — вопрос о материальном единстве мира.

Что же касается его конечности или бесконечности, то этот вопрос могут решить только конкретные науки — астрономия и физика.

Современные средства астрономических наблюдений — мощные телескопы и радиотелескопы — охватывают огромную область пространства радиусом около 12 миллиардов световых лет.

Развитие астрономии в XX веке выявило тесную взаимосвязь и взаимозависимость между существованием жизни на Земле и свойствами Вселенной. В физическом отношении человечество является частью Вселенной и подчиняется действующим в ней физическим и другим закономерностям. В частности, само возникновение жизни на Земле обусловлено всем ходом эволюции материи во Вселенной, эволюции, на определенном этапе которой сложились условия, сделавшие возможным образование живых структур.

Таким образом, в широком смысле слова Вселенная является средой нашего обитания. Поэтому немаловажное значение для практической деятельности человечества имеет то обстоятельство, что во Вселенной господствуют необратимые физические процессы, что она изменяется с течением времени. Человек приступил к освоению космоса, наши свершения приобретают все больший размах, глобальные и даже космические масштабы. И для того, чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в состояние среды нашего обитания, в том числе и космической, мы должны принимать во внимание не только земные процессы, но и закономерности космического масштаба.

www.o8ode.ru

Все о Галактиках Archives — Космос

Все объекты космоса, которые Хаббл не смог отнести ни к спиральным, ни к эллиптическим, были названы «неправильные галактики». Эти неправильные галактики по своей структуре походят друг на друга. Они не имеют целостности и в отдельных фрагментах можно различить яркие звезды и облака горячего излучающего газа.

В некоторых галактиках можно различить остатки былой структуры, обрывки спиральных рукавов. Все неправильные галактики содержат много молодых звезд, часто встречаются в них и яркие облака ионизированного газа. Галактики эти не имеют в своем центре какого-либо реального ядра.

Неправильные галактики выглядят так вследствие того, что они либо очень молоды, либо из-за очень малой плотности вещества. Но есть и еще одно предположение, что галактика может стать неправильной из-за столкновения с другой галактикой. Эти два вида неправильных галактик встречаются в дальнем космосе.

Неправильные галактики имеют два подтипа.

Первый подтип I1. Французский астроном Вокулер начал изучать эти галактики и заметил, что у первого типа видны части разрушенной структуры спиральной галактики. Еще этот подтип галактик встречается парами. Но есть и одиночные, возможно столкновение произошло очень давно, и структура галактики еще не восстановилась.

Второй подтип I2. Этот тип галактик имеет очень слабую поверхностную яркость. Так же отсутствует ярко выраженная структура.

Если у галактики поверхностная яркость очень низкая, но имеет обычный линейный размер, значит в ней малая плотность звезд, а также малая плотность материи. Все они по светимости намного слабее  менее ярких спиральных галактик. Галактика М33, имеет светимость  по шкале спиральных галактик самую низкую, но является ярче неправильной галактики Большое Магелланово Облако (БМО).

Читать далее »

kocmos.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *