Какая поверхность у сатурна – Какая поверхность у планеты Сатурн

Содержание

Какая поверхность у планеты Сатурн

Поверхность Сатурна заметно отличается от поверхности Земли, и это факт. Ведь эта планета представлена внушительным по размеру шаром, в составе которого преобладает гелий и водород. Также имеются и другие химические элементы, как у Солнца, поэтому рассматриваемое космическое тело вполне могло бы стать звездой. Но для этого у него не хватает массы.

Особенности поверхности

Наряду с Ураном, Юпитером, Нептуном — Сатурн является огромным газовым шаром. Поэтому поверхность Сатурна – явление, которого попросту не существует. Всё, что есть на его внешнем слое – это многочисленные газообразные вещества, давление в которых огромно. Землянин, наблюдая за планетой с телескопа, может подумать, что на неё можно приземлиться. Связано это убеждение с тем, что мы привыкли жить на Земле, и считаем, что все остальные объекты солнечной системы аналогичны. Но это заблуждение.

Если представить, что поверхность планеты Сатурн – существующий феномен, и человек может ступить на неё и прогуляться, при первых же попытках пришлось бы столкнуться с огромной силой тяжести и высокой температурой, которые создают экстремальные условия, где ни один живой организм, обитающий на Земле, не смог бы выжить.

Даже если провести экспериментальное исследование и отправить на поверхность Сатурна зонд, трудно представить, что он будет отображать, погружаясь в глубину этого газового гиганта. Кроме того, на планете царит густая плотная атмосфера, поэтому аппарат транслировал бы исключительно густой туман, в составе которого, как уже отмечалось, присутствует водород и гелий.

Наряду с этим с каждой новой секундой пребывания на Сатурне аппарат будет регистрировать постоянное повышение температуры и давления. В процессе погружения в недра космического тела произойдёт его раздавливание посредством высокого давления, и весь эксперимент завершится, так и не приведя к новым открытиям касательно того, что именно происходит на Сатурне.

Внутреннее строение Сатурна

Особенности поверхности планеты

Планета является гигантом, поскольку обладает огромными в сравнении с Землёй размерами. В составе в основном находится водород и гелий. Изменение параметров температурного режима и плотности происходит по мере углубления. Однако привычной землянину твёрдости здесь не отыскать. Поэтому, решив прогуляться по планете, любой представитель земного мира рискует провариться вниз, пока не наступит его смерть от высокого давления и экстремальной температуры.


Изучая вопрос, какая поверхность у Сатурна, можно представить более детализированные показатели. Внешний слой представлен молекулярным водородом на 93% и гелием (6%). Оставшийся процент приходится на аммиак, метан, ацетилен и прочие примеси. Формирующие облачность и полосы, присутствующие на планете. Тропосфера подразделяется на три важные зоны, в рамках которых происходит формирование погоды. Они различны по температурному режиму.

  1. Видимая часть включает в себя облака аммиака и находится на 100 км ниже.
  2. После этого следует слой, состоящий из серных сульфидов.
  3. Далее следуют облака с нулевой температурой.

Конечно, постоять на поверхности и ощутить рельеф Сатурна не получится. Но если бы была такая возможность, человек смог бы ощутить 91% земной гравитации. То есть человек, который весит на Земле 100 кг, на поверхности «чужой» планеты будет иметь массу тела в 91 кг.

Таким образом, планета, несмотря на шарообразную форму и схожий с Землёй вид, является другой не только по составу, но и по характеру «поверхности». Говоря простыми словами, её не существует.

Похожие новости:

Не забывайте делиться. Спасибо.

cosmosplanet.ru

Планета Сатурн

Кольца Сатурна

Диаметр колец оценивается в 250 000 километров, а их толщина не превышает 1 километра.

Ученые условно делят кольцевую систему Сатурна на три основных кольца и четвертое – более тонкое, при этом на самом деле кольца образованы из тысяч колец, чередующихся со щелями.

Система колец состоит главным образом из частичек льда (около 93%), меньшего количества тяжелых элементов и пыли.

Частички, из которых состоят кольца Сатурна, имеют размер от 1 сантиметра до 10 метров.

Кольца расположены под углом около 28 градусов к плоскости эклиптики, поэтому в зависимости от взаимного расположения планет с Земли они выглядят по-разному: и в виде колец, и с ребра.

Исследование Сатурна

Впервые наблюдая Сатурн в телескоп в 1609 – 1610 годах, Галилео Галилей заметил, что планета выглядит как три тела, почти касающиеся друг друга, и предположил, что это два крупных «компаньона» Сатурна, однако 2 года спустя не нашел тому подтверждение.

В 1659 году Христиан Гюйгенс с помощью более мощного телескопа выяснил, что «компаньоны» – это на самом деле тонкое плоское кольцо, опоясывающее планету и не касающееся ее.

В 1979 году автоматическая межпланетная станция «Pioneer 11» впервые в истории пролетела вблизи Сатурна, получив изображения планеты и некоторых ее спутников и открыв кольцо F.

В 1980 – 1981 годах систему Сатурна также посетили «Voyager-1» и «Voyager-2». Во время сближения с планетой был сделан ряд фотографий в высоком разрешении и получены данные о температуре и плотности атмосферы Сатурна, а также физических характеристиках его спутников, в том числе Титана.

С 1990-х Сатурн, его спутники и кольца неоднократно исследовались космическим телескопом «Hubble».

В 1997 году к Сатурну была запущена миссия «Cassini-Huygens», которая после 7 лет полета 1 июля 2004 года достигла системы Сатурна и вышла на орбиту вокруг планеты. Зонд «Huygens» отделился от аппарата и на парашюте 14 января 2005 года спустился на поверхность Титана, отобрав пробы атмосферы. За 13 лет научной деятельности космический аппарат «Cassini» перевернул представление ученых о системе газового гиганта. Миссия «Cassini» завершена 15 сентября 2017 года путем погружения космического аппарата в атмосферу Сатурна.

Интересные факты о Сатурне

Средняя плотность Сатурна составляет всего 0,687 грамма на кубический сантиметр, что делает его единственной планетой Солнечной системы, чья средняя плотность ниже плотности воды.

За счет горячего ядра, температура которого достигает 11 700 градусов Цельсия, Сатурн излучает в космос в 2,5 раза больше энергии, чем получает от Солнца.

Облака на северном полюсе Сатурна образуют гигантский шестиугольник, и каждая его сторона составляет приблизительно 13 800 километров.

Некоторые спутники Сатурна, например Пан и Мимас, являются «пастухами колец»: их гравитация играет роль в удержании колец на их местах за счет резонанса с определенными участками кольцевой системы.

Считается, что Сатурн поглотит свои кольца через 100 миллионов лет.

В 1921 году пронесся слух, что кольца Сатурна исчезли. Это было связано с тем, что в момент наблюдений кольцевая система была обращена к Земле ребром и не могла быть рассмотрена с оборудованием того времени.

Фотографии Сатурна

Облака Сатурна в инфракрасном свете

Облачный Сатурн раскрывает рельеф

Полярное сияние Сатурна в ультрафиолетовом свете

Последний взгляд «Cassini» на Сатурн

Сатурн в инфракрасном свете

Северный полюс Сатурна

Вихревые узоры шестиугольника Сатурна

Снимок колец Сатурна, полученный космическим аппаратом «Cassini»

Сатурн, кольца и Титан

Три спутника Сатурна — Титан, Рея и Мимас

Последние новости о Сатурне

in-space.ru

Особенности планеты Сатурн

Огромная газовая планета, за свой неторопливый ход по небесному своду получила название в честь хранителя времени и по совместительству отца Зевса — Кроноса, и была известна древним греческим астрономам как самая возвышенная, дальняя. Древние римляне за эту же неторопливость прозвали Сатурном, в честь бога земледелия, это название получило большое уважение и окончательно прижилось.

Особенности Сатурна в первую очередь заключаются в его великолепнейшей системе колец, а своим размером уступает только Юпитеру, такому же газовому гиганту.
В наше время на вопрос планета Сатурн какая по счету от Солнца, ответ знают практически все. Он неспешно двигается со скоростью 9,69 километров в час, шестым по счету от нашего светила. Среднее расстояние от Земли до Сатурна 1280 миллионов километров, а до Солнца 1440 миллионов км, год на планете длится 29,5 наших земных лет, именно такой период времени требуется для полного оборота по орбите. Причем сутки длятся 10 часов. 32 минуты.


В ученых кругах есть несколько версий того, кто открыл Сатурн первым, вернее его кольца, ведь сейчас не представляется возможным назвать точно, кто первым увидел планету.

В далеком от нас 1610 году Галилео Галилей в телескоп впервые наблюдал очень интересную тройку — Сатурн и вплотную к нему еще две звезды. Сообщение об открытии было послано Кеплеру, а так как все сообщения раньше шифровали, то при расшифровке были утеряны пару букв. И сообщение приобрело совершенно другой смысл и стало касаться Марса. А еще спустя пару лет Галилей уже не обнаружил спутников Сатурна. Кстати, наименьшее расстояние от Земли до Сатурна равняется 1200 млн. км, а наибольшее 1660 миллионов.

Затем в 1656 году Христиан Гюйгенс Ван Зейлихем, астроном из Нидерландов, при помощи более мощного телескопа, смог не только разглядеть кольца, но даже определил какую форму они имеют. Открытие Титана тоже заслуга этого астронома.
Самый весомый вклад в наблюдениях за Сатурном принадлежит астроному Джованни Доменико Кассини, который начал наблюдение за планетой в 1675 году и сумел обнаружить довольно крупные спутники Сатурна, а также зазор между кольцами, который назвали впоследствии в его честь.
Автоматические космические станции начали исследование планеты и его спутники с 1979 года, первым гостем стал «Пионер-11». Было сделано немало снимков, но так как четкость была не на высоте, то ученым не удалось понять, как выглядит Сатурн.

Более полную картину удалось получить с аппаратов «Вояджер», которые смогли сделать снимки самой планеты и его попутчиков, произвести измерения температуры, состава атмосферы, а также много других данных.

Сколько лететь до Сатурна однозначно ответить нельзя, тут все зависит от многих факторов, например, «Пионер-11» долетел за тридцать восемь месяцев.

Сравнение Сатурна и Земли

Знакомство

В 1997 году с целью исследовать конкретно Сатурн, поверхность планеты, его атмосферу, и окружение был запущен космический аппарат «Cassini – Huygens». Несмотря на то что планету уже посещали другие космические аппараты, именно в этот полет стало известно много интересного о планете и о спутниках. Сколько лететь до Сатурна пришлось аппарату? 81 месяц потребовался для полета до Сатурна, миссия длилась до 22 апреля 2017 года, после этого зонд «Cassini» начал спуск в атмосферу Сатурна и передал свои последние данные в сентябре 2017 года. Длилась экспедиция почти двадцать лет.


Из определения газовый гигант уже становится понятно из чего состоит Сатурн, в основной своей массе это водород, чуть разбавленный смесью гелия, метана, аммиака.
Железо, никель, силикаты да лёд составляют 25 тысяч километров ядра, температура в нем достигает 11800 градусов, а сверху простирается водородный слой и внешний слой газа. Своей массой он превышает массу нашей уютной планеты в девяносто пять раз, но при этом считается самой легкой планетой, его плотность 0, 686 грамм на сантиметр.

Вы уже поняли какая поверхность у Сатурна — она газовая, твердой поверхности нет.
Атмосфера делится на облака верхней части, состоящие из аммиака, и нижней из воды или же содержат гидросульфит аммония. Температура в верхней части атмосферы достигает минусовых пределов, до — 180 градусов, и повышается ближе к центру планеты. Атмосфера очень плотная, похожа на юпитерскую.

Чем объясняется наличие у Юпитера и Сатурна похожих составов попробовали объяснить ученые, они выдвинули гипотезу, что изначально было сформировано плотное тело, которое достигнув массы способной удерживать водород, начало поглощать водород из облака газа и пыли, что окружало Солнце. Именно из-за этого сформировались такие плотные атмосферы у этих газовых гигантов.
На севере, в районе полюса облака образовали интересную шестиугольную фигуру, причем по площади весьма внушительную, она не изменяет своей формы при вращении и остается неизменной более 20 лет. Впервые шестиугольник был увиден при помощи космического аппарата «Вояджер», который преодолел расстояние от Земли до Сатурна, и передал данные в 1980 годах. Такого гигантского образования ученые еще не видели, но предполагают, что это шторм и его свободному движению не мешает рельеф Сатурна по причине отсутствия. Как он возник и что дает ему силы для существования еще предстоит выяснить.

И хотя гигант с космоса выглядит спокойным, но на самом деле это не так. Погода на планете Сатурн довольно ветреная, ветра достигают очень больших скоростей, до 550 метров в секунду и это не предел. Причем направление движения совпадают с вращением планеты вокруг своей оси, с запада на восток. С частотой один раз в двадцать пять — тридцать лет начинается сверхмощный ураган, несущийся с бешеной скоростью около двух тысяч километров в час.

Сверхмощные разряды молний сопровождают бури, которые длятся не по одному месяцу. Великолепнейшие полярные сияния представлены на Сатурне овальными кольцами, по своей, по интенсивности, а также по положению зависят от силы солнечного ветра. Примерно такие же явления наблюдаются и на Юпитере.
Магнитное поле достигает огромных размеров простираясь на один миллион километров и создается оно при движении металлического водорода.

Сатурн и его спутники — Титан, Янус, Мимас и Прометей — на фоне колец Сатурна,

Спутники и кольца

Кольца включают в себя частички изо льда и силикатов, достигающих разных размеров.
Всего их четыре, по своей ширине достигают одного километра, зато по диаметру выглядят более внушительно — примерно двести пятьдесят километров. Из них три видны отчетливо и одно практически прозрачно. Как они образовались до конца непонятно, но была выдвинута гипотеза, что образование произошло после распада спутника в жидком состоянии благодаря воздействию приливных сил.


В 1921 году произошел курьезный случай — в этом году кольца встали ребром и с Земли перестали быть видны. Народ воспринял эту новость буквально решил, что кольца разрушились и будут падать на землян. Все приготовились к кольцепаду, даже проводились расчеты, когда именно ожидается прибытие первых частей.

Попутчики Сатурна делятся на регулярные и нерегулярные — их движение отличается от правил, официальное количество спутников Сатурна 63, но на самом деле их намного больше и количество переваливает за 200. Из них только пятьдесят три луны имеют собственное название.
Первый спутник был открыт в 1655 году, им стал Титан — самый большой и имеющий атмосферу из азота и метана. В январе 2015 года зонд «Cassini» начал спуск в атмосферу спутника Сатурна, были обнаружены озера из углеводородов, находящиеся в жидком виде. Ученые допускают присутствие микроорганизмов на планете.

В 2018 году появилась новость, что на спутнике Сатурна нашли жизнь, и этим спутником оказался — Энцелад, сам по себе он считается очень холодным, но под его поверхностью обнаружился океан, и по химическому составу он весьма благоприятен для развития жизни.
Большинство из сопровождающих Сатурн имеют размеры не очень большие и их состав — каменные породы и лед.

Ну, а теперь спутники Сатурна, список самых крупных, все спутники продолжают находиться под пристальным вниманием ученых, так что открытий можно ждать и дальше.

Титан — диаметр 5150, был открыт в 1655 году Х. Гюйгенсом.

Рея — диаметр 1528, открытие 1672 год Д. Кассини. На ледяной поверхности множество кратеров, разряженная атмосфера имеет в составе углекислый газ и кислород.

Япет —диаметр 1436, замечен в 1671 году Джованни Кассини. Примечателен своим двухцветным окрасом — одна сторона черная, другая белая. На поверхности наблюдается горный массив.

Диона — диаметр 1118 км, обрела известность в 1684 году благодаря Д. Кассини. Имеет тонкую атмосферу, на поверхности много кратеров.

Тефия — 1060 км, обнаружена в 1684 году Джованни Кассини. Имеет очень светлую поверхность, с большим количеством кратеров, самый большой Одиссей, почти 450 км.

Внутреннее строение Сатурна

Заключение

Подведем итоги, что нам поведала о себе планета Сатурн, интересные факты коротко.

Занимая шестое место в нашей системе, он удален от нашего светила на среднее расстояние в 1430 миллионов километров, по величине уступает только Юпитеру и стоит на почетном втором месте. Известен с древних времен, нарекли планету его в честь римского бога земледелия Сатурна.


Имеется великолепная система колец, что несомненно можно отнести к особенности планеты Сатурн. Так же, как и то, что плотность он имеет самую маленькую, и если бы была возможность поместить планету в воду, то он бы держался на поверхности воды.

Сутки длятся 10 часов 34 минуты. Год на планете длится почти тридцать лет, то есть смена времен года тянется весьма долго. 7,5 лет лета еще куда ни шло, но такой длинной зиме, вряд ли кто обрадуется.

Как выглядит Сатурн, вы уже поняли. Огромный газовый шар, чуть сплюснутый с полюсов. Не имеющий твердой поверхности, как на Земле и состоящий из водорода и гелия.

Погода на планете Сатурн не порадует любителей прогулок, скорость ветра весьма далека от идеальной для променада и достигает 1800 км в час. Зато планета дает возможность полюбоваться великолепными полярными сияниями.

Сколько лететь до Сатурна зависит от многих параметров космических аппаратов, например, какой двигатель установлен. Какой вес, ведь чем тяжелее, тем соответственно меньше скорость.

Расстояние от Земли до Сатурна, если измерять в световых минутах составит: минимальное 66 минут, а максимальное 91 минуту.

Кто открыл Сатурн первым сказать точно не получиться, так как нет таких сведений, а вот первые спутники начали официально открывать с 1655 года. Кольца обнаружил Галилео Галилей, в 1610 году, правда он сам не понял, что это кольца, решив, что наблюдает Сатурн и два его спутника. Да и неразбериха произошла при фиксации открытия, потерялся смысл сообщения при дешифровке и вместо одного получили, что на Марсе открыли два спутника. И только спустя пятьдесят лет Христиан Гюйгенс рассмотрел кольца. Произошло это в 1659 году.


Спутников у планеты шестьдесят три и открытие новых продолжается по сей день. Самый крупный — Титан, своими параметрами превосходит Меркурий. А на Энцеладе ученые обнаружили океан, скрывающийся под поверхностью спутника, и он вполне годен для развития микроорганизмов.

Магнитное поле Сатурна своим размером уступает только полю Юпитера.

Вот такое короткое, ознакомительное описание планеты Сатурн у нас получилось.

Более подробно вы сможете познакомиться с этой великолепной планетой в наших следующих статьях.

До скорой встречи.

Похожие новости:

Не забывайте делиться. Спасибо.

cosmosplanet.ru

химический состав и описание с фото

Цветные кадры от Кассини демонстрируют перемену во внешнем полярном регионе Сатурна с 2012-2016 гг

Состав атмосферы Сатурна – газового гиганта Солнечной системы: химический состав, наличие атмосферы и полос, скорость ветра, высота облаков, температура.

Глупо задаваться вопросом касательно наличия атмосферы Сатурна, потому что это буквально вся планета. Так что давайте внимательно изучим состав. Атмосфера Сатурна на 75% представлена водородом и на 25% гелием. Есть также примеси в виде водяного льда или метана.

На поверхности Сатурна заметные облачные полосы, но они не такие яркие как у Юпитера. Кажутся бледными и теряют свой цвет. Оранжевый цвет планеты создается присутствием серы. Кроме того, есть азот и кислород. Атомы смешиваются и трансформируются в сложные молекулы. В земных условиях это именуют смогом.

Планета способна похвастаться одними из самых быстрых ветров, разгоняющихся до 1800 км/ч. Из-за этого белые штормы способны сформироваться всего за несколько часов. Но их длительность охватывает примерно месяц, после чего уходят вглубь.

Строение атмосферы Сатурна

Состав облаков атмосферы Сатурна включают аммиак и располагаются на высоте в 100 км ниже тропосферы. Температура на этой точке опускается ниже -250°C. На высоте в 170 км находятся скопления сульфида аммония, а температура достигает -70°C. Ниже всех проживают водяные облака (130 км), а температура – 0 °C.

Важно понимать, что давление и температура будут возрастать с процессом углубления к ядру, а водородный газ трансформируется в жидкость. На фото можно внимательно рассмотреть, как выглядит атмосфера планеты Сатурн в ее истинном цвете и с бурями в облаках.

v-kosmose.com

Планета Сатурн

Сатурн — шестая планета по удалённости от центра нашей Солнечной системы. По своим габаритам он занимает второе место после Юпитера среди других планет, вращающихся на орбите Солнца. Учёные относят Сатурн к газовым гигантам. А назван он был в честь древнего бога плодородия, символом которого являлся серп.

В химическом составе планеты фигурирует водород. В незначительном количестве также находятся примеси гелия, метана, аммиака и молекулы воды. Ядро планеты состоит из железа, льда и никеля. Сверху оно покрыто металлическим водородом и лёгкой газовой оболочкой. Если наблюдать за атмосферой гиганта из космоса, то её можно будет охарактеризовать как достаточно однородную и спокойную, с наличием в ней крупных образований. Скорость ветра в некоторых областях планеты способна достигать отметки 1800 км/ч, что существенно превышает подобные показатели на Юпитере. Сила напряжённости магнитного поля Сатурна находится где-то посередине между показателями полей Земли и Юпитера. Если говорить конкретно о площади магнитного поля гиганта, то оно простирается почти на 1 миллион километров по направлению к Солнцу.

Особенностью Сатурна является его знаменитая система видимых колец. Они состоят из замёрзших частиц газа, пыли и тяжелых элементов. Под влиянием гиганта на текущий момент находится 63 спутника. Титан — крупнейший среди них. Он же считается вторым по габаритам спутником планет, которые вращаются вокруг Солнца. Самым крупным спутником Солнечной системы является Ганимед, он находится под властью Юпитера.
В 1997 году на орбиту Сатурна была запущена межпланетная автоматическая станция «Кассини». В 2004 году она достигла системы Сатурна и с тех пор осуществляет наблюдение за гигантом. Задачей станции является исследование колец, их структуры, динамических процессов в атмосфере и магнитном поле Сатурна.

Сатурн как планета Солнечной системы

Как было упомянуто ранее — Сатурн причислен к газовым гигантам на основании того, что у него не имеется твердой поверхности и состоит он главным образом из летучих веществ — газов. Радиус экватора Сатурна равен 60,3 тысячи километров, а полярный радиус — 54,4. Известно, что среди всех планет Солнечной системы Сатурну присуще самое мощное сжатие. Масса гиганта почти в 100 раз больше массы Земли. Но средняя плотность газовой планеты составляет около 0,7 г/см2. Этот показатель свидетельствует о том, что Сатурн является единственной в своём роде планетой, принадлежащей к нашей звёздной системе, плотность которой меньше плотности воды. При значительном различии (почти в 3 раза) показателей массы Сатурна и Юпитера, разница между их экваториальными диаметрами равна всего лишь 19%. Если говорить о показателях плотности других планет из числа газовых гигантов, то у них они значительно выше.

Орбитальные характеристики и вращение

Дистанция от Солнца до Сатурна составляет 1430 миллиона километров. Полный оборот вокруг светила гигант совершает почти за 11 тысяч дней (при скорости вращения 9,8 км/с), что равно примерно 30 земным годам.

Видимые объекты, находящиеся в атмосфере Сатурна, имеют разную скорость вращения, это зависит от широты, на которой они располагаются.
Полный оборот Сатурна вокруг его оси совершается в течение 10 часов и 34 минут. Он также является единственной планетой, осевая скорость вращения которой на экваторе больше, нежели орбитальная.

Показатели скорости вращения Сатурна различны как по широте и долготе, так и по временным промежуткам. Такой вывод сделал исследователь Вильямс. Данные о переменности периода вращения экваториальной области гиганта за период в 200 лет дали основания полагать, что в основном на это воздействуют циклы, полугодовой и годовой.

Происхождение планеты Сатурн

Происхождение Сатурна объясняется двумя основными гипотезами. Гипотеза «контракции» заключается в сопоставлении газового гиганта с Солнцем по количеству вращающихся вокруг них тел и наличию значительной доли водорода в химическом составе. Объясняют это тем, что при формировании планет в ранней Солнечной системе также образовывались массивные «сгущения». Именно из этого материала и стали в дальнейшем формироваться планеты. То есть, согласно первой теории, они формировались аналогичным способом, что и само Солнце. Однако с помощью этой гипотезы невозможно объяснить причину различия в химическом составе Солнца и Сатурна.

По гипотезе «аккреции» формирование Сатурна происходило в два этапа. Сторонники этого мнения считают, что сначала гигант сформировался по тому же принципу, по какому образовывались твёрдые планеты. Но потом в область Сатурна из области Юпитера стали регулярно попадать потоки газа, сильно изменившие химический состав планеты. Начался второй этап становления Сатурна. В более поздний период вблизи поверхности гиганта происходил процесс аккреции газа. Температура наружных слоёв планеты в это время достигала 2000 °C.

Атмосфера Сатурна и её строение

Верхние слои атмосферы гиганта лишь на 3,5% состоят из гелия, а оставшиеся 96,5% — из водорода. Также в некотором количестве имеются примеси фосфина, аммиака, этана и метана. Во время миссий «Вояджеров» было обнаружено, что на Сатурне присутствуют сильнейшие потоки ветра. С помощью орбитальных аппаратов учёным удалось установить их примерную скорость — 500 м/с. Такие ветры, как правило, дуют в восточном направлении. Их мощь ослабевает с удалением от экватора. Потенциал потоков значительно уменьшается ввиду того, что им начинают противостоять западные ветры. Учёные обнаружили также тот факт, что «движение» происходит как в верхних слоях атмосферы Сатурна, где находятся облака, так и в нижних. На глубине до 2 тысяч километров также присутствует определённая активность. С помощью измерений, сделанных «Вояджером», учёным удалось установить, что ветры всегда направлены вдоль экватора как в северном, так и в южном полушариях.

Астрофизики из Британии обнаружили ещё один тип полярного сияния, который также присутствует на Сатурне. Оно представляет собой кольцо, опоясывающее один из полюсов газового гиганта.

Также в атмосфере планеты время от времени появляются устойчивые образования в виде сверхмощных ураганов. Такие же объекты ранее наблюдались и у других газовых планет нашей системы. Что касается Сатурна, то впервые «Большой белый овал» аппаратам удалось зафиксировать около 15 лет назад. Проявляется он на планете также с определённой частотой — один раз в 30 лет.

В 2008 году межпланетная автоматическая станция «Кассини» сделала фотографии северного полюса планеты. Съёмка на момент исследования велась в инфракрасном диапазоне. Учёные заметили полярные сияния, которые также были признаны «уникальным» явлением для планет, входящих в Солнечную систему. Новые снимки сияний также удалось получить в видимом и ультрафиолетовом диапазонах. Сияния, обнаруженные в области полюсов Сатурна, почти всегда имеют кольцеобразную форму, редко спиральную или овальную. Полярные сияния имеют голубой цвет, а облака, лежащие внизу — красный.

По сравнению с полярными сияниями Юпитера, на Сатурне их происхождение не вызвано неравномерностью вращения плазменных слоёв магнитосферы. Многие учёные придерживаются мнения, что возникновение сияний как раз связано с воздействием солнечных ветров. Вид и форма сияний Сатурна время от времени изменяются.

В определённые периоды, сопровождающиеся сильными магнитными штормами и бурями, на Сатурне можно наблюдать мощные разряды молнии. Известно, что они влияют на электромагнитную активность планеты, которая всегда нестабильна. В 2010 году космический аппарат «Кассини» сумел отчетливо снять шторм, который напоминал дым от сигареты. Подобный по мощности шторм был также зафиксирован станцией в середине 2011 года.

Шестиугольник Сатурна. Образование на северном полюсе планеты

Скопившиеся в районе северного полюса планеты облака образуют гексагональную фигуру — шестиугольник. Впервые феномен был открыт при анализе снимков, полученных со станции «Вояджер» в 80-х годах прошлого столетия. Обнаруженное явление признали уникальным для нашей Солнечной системы. Загадочный шестиугольный гигант находится на широте 78°. Период его вращения равен 10 часам и 40 минутам. Этот период сопоставим с периодом снижения или увеличения радиоизлучения планеты.
Выяснилось, что облака, образующие шестиугольник, имеют редкие структуры. Также исследования 2006 года установили, что это образование оставалось стабильным на протяжении 20 лет.

Следует отметить, что некоторые облака в атмосфере Земли также могут обладать шестиугольной формой. Но сатурнианские шестиугольники имеют более правильную форму.

Подробное объяснение открытому явлению пока никому не удалось найти. Но все же учёные смоделировали структуру атмосферы Сатурна и выяснили вероятные причины образования скоплений именно такой формы. Во время эксперимента был взят баллон с водой, вмещающий 30 литров, который закрепили на вращающуюся поверхность. Внутри него были размещены кольца небольшого диаметра, которые вращались быстрее самой ёмкости. Было установлено, что чем больше становилась скорость вращения кольца, тем больше форма вихря «отклонялась» от круговой формы. В результате эксперимента учеными был получен шестиугольный вихрь.

Внутреннее строение Сатурна

Для нижних слоёв атмосферы Сатурна характерны более высокая температура и давление. Водород здесь переходит в жидкое состояние. Этот переход не происходит резко. На глубине 30 тысяч км водород под давлением приблизительно 3 миллиона атмосфер становится металлическим. Циркуляция токов в таком водороде начинает формировать магнитное поле. В центральной части планеты располагается крупное ядро из металлов, льда и силикатов. Его температура равна 11,7 тысячи °C. При этом энергия, высвобождаемая планетой в космическое пространство, примерно в 2,5 раза превышает энергию, которую Сатурну даёт Солнце. Определённая часть энергии генерируется. Сжимаясь, она начинает преобразовываться в тепло. Но такое явление — не единственный источник энергии газового гиганта. Считается, что часть тепла создаётся на планете из-за процесса конденсации гелия и дальнейшего проникновения его капель (соединений) через менее плотный водородный слой. Результат — переход потенциальной энергии капель гелия в тепловую энергию.

Структура магнитного поля Сатурна

Магнитную сферу Сатурна открыли при выполнении миссии орбитального комплекса «Пионер-11». Это произошло в 1979 году. Оказалось, что магнитосфера планеты по своим размерам уступает лишь магнитосфере Юпитера. Зона между магнитосферой планеты и областью, которой достигает солнечный ветер, находится от Сатурна на удалении, равном 20-ти его радиусам. Хвост магнитосферы измеряется несколькими сотнями таких радиусов. Магнитосфера планеты состоит из плазмы, которую продуцируют Сатурн и его спутники. Среди спутников важную роль играет Энцелад, точнее, его гейзеры. Они выбрасывают водяной пар, который подвергается ионизации магнитным полем планеты.

Видимым признаком «контакта» магнитосферы Сатурна и солнечного ветра являются яркоокрашенные полярные сияния овальной формы, окружающие полюса планеты. Они образуются путём генерации энергии, освобождающейся вследствие взаимодействия магнитосферы и солнечного ветра. В атмосфере Сатурна полярные сияния можно наблюдать в инфракрасном, видимом и ультрафиолетовом диапазонах. Магнитное поле Сатурна, равно как и Юпитера, формируется вследствие эффекта динамики во время циркуляции металлического водорода во внешних слоях ядра планеты.

Магнитное поле Сатурна можно охарактеризовать как дипольное (как у Земли), где всегда присутствуют два полюса — южный и северный. Магнитный диполь газового гиганта напрямую связан с вращением его оси. Именно это и делает поле ассиметричным. У этого диполя наблюдается небольшое смещение вдоль оси планеты по направлению к северному полюсу.
Внутреннее магнитное поле газового гиганта способствует отклонению солнечного ветра от его поверхности, препятствуя его «контакту» с атмосферой. Оно также влияет на состав плазмы магнитосферы планеты, которая становится отличной от плазмы солнечного ветра. Как и в случае с Землёй, область, создающая границу между магнитосферой и солнечным ветром, называют магнитопаузой. Дистанция от магнитопаузы до «сердца» Сатурна находится в промежутке 16-27 Rs. На это расстояние оказывает влияние давление солнечного ветра, которое напрямую зависит от активности звезды на данный момент. Принято считать, что среднее расстояние от планеты до магнитопаузы — 22 Rs. Длинный хвост магнитосферы образовывается из-за влияния мощных потоков солнечного ветра.

Исследования Сатурна

Сатурн представляет собой одну из пяти крупнейших планет нашей звездной системы, которую можно увидеть с поверхности Земли без применения специальной оптики. Максимум блеска Сатурна превосходит значение первой звёздной величины. Чтобы стали видны кольца Сатурна, необходимо применение телескопа диаметром 15 мм+. При использовании приборов с хорошей увеличительной способностью становится видна более тёмная «шапка» на полюсах планеты, а также тень колец Сатурна. При апертуре (характеристике) оптического прибора в 150-200 мм можно увидеть пять крупных полос облаков атмосферы.

Впервые Галилео Галилей наблюдал Сатурн с помощью телескопа в начале XVII века. Планета выглядела не как однородный небесный объект, а как три отдельных, находящихся рядом друг с другом. Сначала возникло мнение, что два из них являются крупными спутниками Сатурна. Но несколько лет спустя самим Галилеем не было обнаружено крупных спутников планеты. В середине XVII столетия Гюйгенсом при помощи более мощного прибора было установлено, что те самые спутники — это не что иное, как тонкий круг, опоясывающий планету, не соприкасающийся с ней. Учёные также открыли Титан — крупнейший спутник Сатурна. В последней четверти XVII века к плотному изучению гигантской планеты приступил Джованни Кассини. Он обнаружил, что крупное кольцо на самом деле состоит из двух, разделённых зазором, который получил название «щель Кассини». Также учёным было открыто ещё несколько спутников газового гиганта: Рея, Япет, Тефия и Диона.

Только в конце XVIII века У. Гершель открыл два новых спутника Сатурна: Мимас и Энцелад. После этого британскими астрономами был обнаружен спутник Гиперион со странной, несферической, формой. И уже в конце XX века Уильямом Пикерингом была открыта Феба — нерегулярный спутник Сатурна. В 40-х годах XX столетия Джерард Койпер заявил о наличии мощной атмосферы на Титане — самом крупном спутнике гиганта, что стало уникальным явлением для спутников планет Солнечной системы.

В 90-х годах прошлого века Сатурн со всеми его спутниками и кольцами многократно исследовался с помощью телескопа «Хаббл». Пристальные наблюдения помогли открыть много новых фактов, которые были недоступны при одноразовых пролётах аппаратов «Пионер-11» и «Вояджеров» над планетой.

Исследования Сатурна космическими аппаратами «Кассини-Гюйгенс», «Пионер-11», «Пионер-22», «Вояджер»

В 1979-ом году американская автоматическая станция «Пионер-11» впервые за всю историю астрономии пролетела рядом с Сатурном. Запланированное исследование планеты началось в августе. Максимальное приближение станции к поверхности Сатурна состоялось в начале сентября 1979 года. В тот момент были сделаны уникальные кадры нескольких областей планеты и её спутников. Но разрешение аппаратов, осуществлявших наблюдения, было недостаточным для получения чётких снимков поверхности планеты-гиганта. Также ввиду дефицита солнечного света изображения оказались слишком тёмными. Чтобы получить больше информации о загадочных кольцах Сатурна, аппарат был направлен в их область и пролетел под кольцами. Именно тогда было открыто тонкое кольцо «F». В миссию «Пионера-11» также входило измерение температуры Титана.

Через год после исследований Сатурна, осуществлённых «Пионером-11», к изучению планеты также были подключены американские станции «Вояджер-1» и «Вояджер-2». Первая машина сблизилась с Сатурном 13 ноября 1980 года и сделала множество снимков лучшего качества, чем это было сделано «Пионером-22». Также в это время учёным удалось получить изображения хорошего качества спутников Сатурна: Титана, Реи, Энцелада, Дионы, Мимаса и Тефии. В результате данной миссии станция сумела приблизиться к Титану на расстояние 6,5 километра, что позволило получить больше информации об атмосфере и температуре поверхности спутника. Также было обнаружено, что Титан имеет очень плотную атмосферу, не пропускающую достаточного для получения качественных снимков количества солнечного света.

Ровно через год к Сатурну приблизилась другая автоматическая космическая станция — «Вояджер-2». Главная миссия этого аппарата заключалась в проведении исследований атмосферы гиганта при помощи специального радара. Благодаря ему и удалось выяснить данные о плотности и температуре атмосферы планеты. За весь период наблюдений им было сделано и направлено на Землю примерно 16 тысяч снимков. Но во время выполнения миссии система, отвечающая за поворот камеры, вдруг заклинилась на несколько дней. По этой причине некоторые важные снимки учёными не были получены. Потом аппарат развернулся и полетел в сторону Урана. Благодаря этим машинам удалось получить огромное количество информации о магнитном поле планеты, структуре её колец, о штормах в атмосфере Сатурна. Также астрофизики открыли щели Килера и Максвелла, обнаружили новые спутники.

В 1997 году к исследованиям газового гиганта приступила станция «Кассини-Гюйгенс», которой удалось достигнуть системы Сатурна и выйти на орбиту планеты. Главной задачей данной миссии являлось тщательное исследование структуры колец и всех открытых спутников Сатурна. Также учёные планировали изучить динамику магнитосферы и атмосферы планеты, как можно лучше исследовать её самый крупный спутник — Титан.

До того как станция оказалась на орбите планеты в 2004 году, она пересекла область обращения Фебы, благополучно сделав её фотографии и отправив их на Землю. Также американская орбитальная машина «Кассини» несколько раз оказывалась вблизи Титана. Благодаря этому были сняты его озёра с береговой линией, острова и горы спутника. Вскоре после этого произошло отсоединение европейского зонда «Гюйгенс» от американского аппарата с целью приближения к поверхности планеты. Спуск при помощи парашюта длился около 2,5 часа. Зонд взял пробы атмосферы газового гиганта. Их дальнейший анализ показал, что нижние слои облаков составляют жидкие азот и метан, а верхние — лёд, образованный из метана.

В 2005 ученые приступили к наблюдению излучения, исходящего от Сатурна. В январе 2006 года на газовом гиганте был зафиксирован сильнейший шторм. Он стал причиной вспышки, в 1000 раз превосходящей по интенсивности нормальное излучение планеты. В это же время НАСА обнародовала новость о возможном нахождении следов воды в составе жидкости, извергаемой гейзерами Энцелада. В 2011 году представители НАСА заявили о том, что Энцелад является наиболее подходящим для поддержания жизни объектом, находящимся в Солнечной системе. Снимки, полученные со станции «Кассини», также помогли сделать другие, не менее значимые, открытия. Во время анализа изображений, сделанных космическим аппаратом, удалось выявить новые кольца планеты — R/2004 S1 и R/2004 S2. Ученые пришли к мнению, что они были образованы вследствие столкновения кометы или метеорита с Эпиметеем или Янусом. В 2006 «Кассини» произвёл съёмку, благодаря которой ученые обнаружили на поверхности Титана углеводородное озеро, расположенное вблизи его северного полюса. Факт находки окончательно подтвердила съёмка 2007 года.

В 2008 году «Кассини» направил на Землю фотографии с изображением северного полушария Сатурна. Оказалось, что с 2004 года, когда аппарат был вблизи планеты, на ней произошло много изменений. Ведь за четыре года отсутствия «Кассини» она приобрела совершенно другие оттенки, и объяснения этому феномену учеными пока не найдено. Они лишь предположили, что это может быть связано со сменой времени года.

За период миссии «Кассини», которая длилась с 2004 по 2009 год, удалось открыть еще 8 новых спутников гиганта. Выполнение главных задач, поставленных перед миссией, аппарат завершил в 2008 году. Но пребывание «Кассини» в зоне Сатурна продлилось вплоть до 2010 года. Учёные говорят, что на сегодняшний день и на период до 2017 года задача зонда — изучение циклов сезонов газовой планеты.
В 2009 году было принято решение о создании нового совместного проекта НАСА и ЕКА, который заключался в запуске ещё одного межпланетного аппарата в область Сатурна, а затем к его двум спутникам — Энцеладу и Титану. Миссия космической станции была рассчитана так, чтобы после 8 лет путешествия она сама стала спутником Титана.

Сатурн и его спутники

Самыми крупными спутниками Сатурна являются: Титан, Энцелад, Тефея, Мимас, Рея, Диона и Япет. Их обнаружили ещё в XVIII веке, но изучение продолжается и сегодня. Диаметры этих объектов находятся в пределах 400-5200 километров. Титан обладает самым большим орбитальным эксцентриситетом, а у Тефии и Дионы он наименьший.

Титан является наиболее крупным спутником Сатурна. Преимущественно в его состав входят скальные породы и водяной лёд (50% на 50%). Примерно такие же пропорции встречаются в составе других газовых планет. Но Титан отличается от них по химическому составу и структуре его атмосферы. Она включает преимущественно азот с небольшой примесью метана и этана, участвующих в образовании облаков. Титан был признан единственным объектом, помимо нашей планеты, на поверхности которого была обнаружена вода. Именно поэтому учёные не исключают присутствия на нём жизни в виде простейших организмов.

Другие спутники Сатурна также имеют свои особенности. Например, у Япета оба полушария имеют разные альбедо. Именно поэтому Джованни Кассини, открывший спутник, обратил внимание, что виден он только тогда, когда находится на определённой стороне Сатурна. Полушария Реи и Дионы также имеют свои особенности. Например, в области одного полушария Дионы находится множество кратеров. А в области её заднего полушария имеется большое количество затемнённых участков, пронизанных светлыми блестящими линиями, которые в действительности представляют собой ледяные хребты и обрывы. Главная особенность спутника Мимас — кратер Гершель, диаметр его достигает 130 км. Кратер гигантских размеров имеется и на Тефии. Его диаметр равен 400 км. Что касается ещё одного крупного спутника Сатурна — Энцелада, то судя по изображениям «Вояджер-2» области его поверхности имеют разный геологический возраст.

Исследования, проводимые на Гавайях с 2006 года с помощью японского телескопа Субару, позволили открыть ещё 9 спутников газового гиганта. Все они оказались нерегулярными спутниками, отличающимися ретроградной орбитой.

На 2010 год учёным было известно о 62 спутниках Сатурна. Вращение всех обнаруженных спутников, за исключением Фебы и Гипериона, характеризуется как синхронное собственное. Лишь одна их сторона всегда обращена к Сатурну. Данных об обращении более мелких спутников на текущий момент не существует.

Сатурн и Земля. Сравнение. Кольца Сатурна

На сегодняшний день установлено, что все газовые планеты, входящие в Солнечную систему, имеют кольца. Но Сатурн обладает самыми крупными кольцами. Они располагаются под углом почти 28° по отношению к плоскости эклиптики. Именно по этой причине с поверхности Земли они выглядят всегда по-разному. Гюйс выдвинул предположение, согласно которому данные кольца не являются плотными телами, а сформированы из мельчайших фрагментов, находящихся в области околопланетной орбиты. Догадка полностью подтверждена спектрометрическими наблюдениями А.А. Белопольского.

Сатурн имеет три основные кольца и одно — второстепенное, более тонкое. Они отражают большее количество света, чем диск самой планеты. Три основных кольца учёные условились обозначать заглавными латинскими буквами. Кольцо «В» представляет собой центральное, самое ярко

astro-azbuka.ru

какая поверхность у сатурна и урана и нептуна

The controversy stems from the fact that Pluto resembles the icy, comet-like objects orbiting the sun outside of Neptune’s orbit rather than either the rocky planets (Mercury, Venus Earth and Mars) or the gas giant planets (Jupiter, Saturn, Uranus, Neptune). The factors, which set Pluto apart from the other planets, include its composition, atmosphere, small size, large moon (compared to Pluto’s size), and orbit around the sun.

Composition: Pluto is thought to be composed of ice, rock, and frozen gases, similar to the composition of the comet-like objects in the Kuiper belt (the region beyond Neptune’s orbit)

Atmosphere: Pluto’s atmosphere grows as it moves closer to the sun and recedes as it moves away. This is similar to the comet-like objects found in the vicinity. The frozen gases sublime (turn from a solid to a gas) as Pluto moves closer to the sun and then condense on the surface of Pluto as it moves away from the sun, leaving bright patches on Pluto’s surface. The smaller Kuiper belt objects loose these gases, since they don’t have enough gravitational force to hold on to them. Over time, this leaves dark rock behind in contrast to Pluto’s brightness.

Small size: Pluto’s mass is about 1/500th that of the Earth while Mercury’s is 1/20th that of the Earth. The diameter of Pluto is 1/5 the diameter of the Earth whereas Mercury’s diameter is about 1/3 Earth’s. Pluto is a giant among the Kuiper belt objects but there may have been other Pluto-sized objects in the Kuiper belt, which have either been incorporated into the gas giant planets or flung outward and ejected from the solar system.

Large moon: Pluto’s moon, Charon’s radius is about 55% of the radius of Pluto and its mass is about one-eighth the mass of Pluto. It is in synchronous orbit with Pluto which means that Charon is always over the same spot on Pluto. The orbit is only 20,000 km away from Pluto. For comparison, Earth’s moon is about 1/80th the mass of the Earth and orbits 400,000 km away.

Orbit about the sun: Pluto’s orbit is more elliptical than any other planet (It actually crosses Neptune’s orbit.) and it is tilted at an inclination of 17.15 degrees relative to the plane of orbit of the other eight planets. The comet-like objects in the Kuiper belt have similar orbits that are randomly inclined.

К списку вопросов
Солнце • Меркурий • Венера • Земля • Марс • Юпитер • Сатурн • Уран • Нептун
Картинка дня

Лунный бриллиант
Мониторинг Солнца

Вид Солнца сейчас
Новые статьи
Звездная ночь над водопадами Игуазу
Величественная Конская голова
Шаровое скопление M72
Кратер Гершель на спутнике Сатурна Мимасе
Гало вокруг туманности Кошачий глаз
Ошибкам – бой!

otvet.mail.ru

Ответы@Mail.Ru: Твердая ли поверхность Сатурна?

Когда говорят о планете газовый гигант это не значит что она вся из газа… просто у этой планеты очень мощная атмосфера. На какой-то глубине газ переходит в жидкой а потом и в твердое состояние. У сатурна слой металического водорода находится на глубине 30 тыс км от начала атмосферы. Давление там 3 млн атмосфер.

попробуй выйти с балкона, походи по газу…

Да, не получится. С учетом того что ускорение свободного падения выше, чем на Земле, то провалитесь.

Скорость ветра на Сатурне может достигать местами 1800 км/ч средняя плотность Сатурна составляет всего 0,69 г/см³[7], что делает его единственной планетой Солнечной системы, чья средняя плотность меньше плотности воды. Мы же можем сделать широкие надувные «лыжи» (водоступы) и походить по воде. Вероятно нечто такое можно сделать для ходьбы по Сатурну.

Сатурн — это планета, атмосфера которой с глубиной переходит из газообразного состояния в жидкое, а затем, возможно, в твердое.

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *