Какие ракеты бывают – Классификация ракет

Содержание

Какими бывают РАКЕТЫ — Карта слов и выражений русского языка

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Когда-нибудь я тоже научусь различать смыслы слов.

В каком смысле употребляется прилагательное чёрный в отрывке:

Она перевела взгляд на его руки и отметила чёрный лак на ногтях.

В прямом
смысле

В переносном
смысле

Это устойчивое
выражение

Это другое
прилагательное

Предложения со словом «ракеты»:

  • Эти «ядра» были внешне точь-в-точь как современные баллистические ракеты, но, конечно, далеко не такие разрушительные.
  • На её основе немецкие ракетостроители планировали создать многоступенчатую крылатую
    ракету
    , но их время уже заканчивалось.
  • Между прочим, «ушастик» слышал какофонию, поднятую сигнальными ракетами, но, выполняя задания, он вырезал все мешающие делу частоты.
  • (все предложения)

Оставить комментарий

Текст комментария:

Электронная почта:

Дополнительно:

kartaslov.ru

Основные виды ракет » PR портал Expomod.kz

 

 

В нашем цивилизованном мире в каждой стране есть своя армия. И ни одна мощная, подготовленная армия не обойдется без ракетных войск. А какие 

ракеты бывают? Эта занимательная статья расскажет Вам об основных видах ракет, существующих на сегодняшний день. 

Зенитные ракеты

Во время второй мировой войны бомбардировка на больших высотах и за пределами досягаемости зенитных орудий повлекла за собой развитие ракетного оружия. В Великобритании первые усилия были направлены на достижение равноценной разрушающей мощи 3-х а позднее 3,7 дюймовых зенитных орудий. Британцами были предложены две существенных новаторских идеи, касательно 3-х дюймовых ракет. Первой была ракетная система воздушной обороны. Для остановки пропеллеров самолета или для срезания его крыльев в воздух запускалось устройство, состоящее из парашюта и проволоки и тащившее за собой проволочный хвост, который разматывался с катушки, находившейся на земле. Была доступна высота в 20000 футов. Другое устройство представляло собой дистанционный взрыватель с фотоэлементами и термоэлектронным усилителем. Изменение интенсивности света на фотоэлементе, вызванное отражением света от близлетящего самолета (проектируется на элемент с помощью линз) приводила в действие разрывной снаряд.

Единственным значительным изобретением немцев в области зенитных ракет стал Тайфун. Небольшая 6-ти футовая ракета несложной концепции, работающая на ЖРД, Тайфун был предназначен для высот в 50000 футов. Конструкция предусматривала соонсо размещенную емкость для азотной кислоты и смеси органического топлива, но на деле оружие реализовано не было.

 

Воздушные ракеты

Великобритания, СССР, Япония и США – все страны занимались созданием воздушных ракет для применения против наземных, а также воздушных мишеней. Все ракеты практически полностью стабилизировались оперением из-за действующей аэродинамической силы при запуске на скоростях от 250 миль/час и больше. Сначала использовались трубчатые пусковые установки, но впоследствии стали применять установки с прямыми направляющими или нулевой длиной, и размещать их под крыльями самолета.

Одной из самых удачных немецких ракет была 50-ти миллиметровая Р4М. Ее концевой стабилизатор (крыло) оставался в сложенном состоянии до запуска, что позволяло близко расположить ракеты друг к другу при погрузке.
Американское выдающееся достижение – это 4,5 дюймовые ракеты, у каждого истребителя союзников под крылом их было 3 или 4 штуки. Эти ракеты были особенно эффективны против мотострелковых отрядов (колон военной техники), танков, пехоты и поездов со снабжением, а также топливных и артиллерийских складов, аэродромов и барж. Для изменения воздушных ракет к традиционной конструкции добавили ракетный двигатель и стабилизатор. Получили выровненную траекторию, большую дальность полета и повышенную ударную скорость, эффективную против бетонных укрытий и укрепленных мишеней. Такое оружие окрестили крылатой ракетой, и японцы использовали типы в 100 и 370 килограмм. В СССР применяли 25 и 100 килограммовые ракеты и запускали их со штурмовика ИЛ-2.
После ВМВ неуправляемые ракеты со складывающимся стабилизатором, выпускаемые из многотрубных установок стали классическим орудием «воздух-земля» для штурмовых самолетов и тяжело вооруженных вертолетов. Хотя и не так точно как управляемые ракеты или оружейные системы, они подвергают бомбардировке смертоносным огнем сосредоточения войск или техники. Многие сухопутные войска продолжили разработку ракет, запускаемых из трубы контейнера и устанавливаемых на транспортном средстве, которые можно запускать очередью или через короткие интервалы. Как правило, в такой ракетной системе артиллерии или ракетной системе залпового огня используются ракеты диаметром от 100 до 150 мм и дальностью действия от 12 до 18 миль. Ракеты имеют различные типы боеголовок: разрывные, осколочные, зажигательные, дымовые и химические.
СССР и США создали неуправляемые баллистические ракеты где-то спустя 30 лет после войны. В 1955 году США начали испытывать «Честного Джона» в Западной Европе, а с 1957 года СССР выпускает серии огромных вращающихся ракет, запускаемых с передвижного транспортного средства, для НАТО представив ее как FROG (неуправляемая ракета земля-земля). Эти ракеты длиной от 25 до 30 футов и диаметром от 2 до 3 футов имели дальность действия от 20 до 45 миль и могли быть ядерными. Египет и Сирия применяли много таких ракет в первых залпах Арабо-Израильской войны в октябре 1973 года, так же поступал и Ирак в войне с Ираном в 80-х, но в 70-х годах большие ракеты были сдвинуты с передовой сверхдержав ракетами с инерциальной системой наведения, такими как американский Ланс и советский Скарабей SS-21.

 

Тактические управляемые ракеты

Управляемые ракеты стали результатом послевоенного развития электроники, компьютерной техники, датчиков, авионики и в едва меньшей степени ракет, турбореактивного движения и аэродинамики. И хотя тактические, или боевые, управляемые ракеты были разработаны для выполнения различных заданий, их всех объединяют в один класс оружия по схожести систем отслеживания, наведения, управления. Контроль над направлением полета ракеты достигался при помощи отклонения аэродинамических поверхностей, таких как вертикальный стабилизатор; также применялись реактивная струя и вектор тяги. Но именно из-за своей системы наведения эти ракеты стали такими особенными, так как способность производить корректировки во время движения для нахождения цели и отличает управляемую ракету от чисто баллистического оружия, такого как неуправляемые ракеты или артиллерийские снаряды.

expomod.kz

Какие бывают ракеты

Самолеты и воздушные шары, к помощи которых прибегают для изучения атмосферы Земли, могут достигать высоты лишь 30-40 км. Ракеты поднимаются значительно выше, поэтому благодаря им становится возможным исследовать (зондировать) верхние слои атмосферы, например мезосферу и ионосферу. Впервые метеорологическая ракета была запущена 11 апреля 1937 года, а с 1950-х годов начались регулярные запуски ракет для научных исследований.

Самолеты и воздушные шары, к помощи которых прибегают для изучения атмосферы Земли, могут достигать высоты лишь 30-40 км. Ракеты поднимаются значительно выше, поэтому благодаря им становится возможным исследовать (зондировать) верхние слои атмосферы, например мезосферу и ионосферу. Впервые метеорологическая ракета была запущена 11 апреля 1937 года, а с 1950-х годов начались регулярные запуски ракет для научных исследований.

Легкие метеорологические ракеты способны доставить на высоту около 100 км целый комплекс приборов и даже щебень в мешках или граншлак. Тяжелые геофизические ракеты могут поднять несколько комплексов приборов практически на любую высоту.

Исследовательские ракеты оснащаются приборами для измерения атмосферного давления и магнитных полей, космического излучения и состава воздуха, а также оборудованием для передачи результатов измерений на Землю. До появления искусственных спутников Земли метеорологические ракеты помогали ученым вести комплексное исследование планеты: ее погоды, состояния атмосферы и физических процессов в ее недрах.

Экспериментальный образец ракетоносителя «Авангард TV1» в момент заправки жидким кислородом. 15 апреля 1957 г., мыс Канаверал

Ракетоноситель «Интеркосмос» на космодроме Капустин Яр

Великое мастерство артиллерии. Французское издание книги Казимира Семеновича. 1651 г.

Ракетоноситель «Восток» в сборочном цехе

Современный ракетоноситель перед отправкой на космодром

Двигатель ракетоносителя (макет)

Широко применяются ракеты, в которых приборы после выполнения поставленной задачи опускаются на парашютах.

Маленькие ракеты

Часто в праздничные дни в небо запускают фейерверки, которые всем очень нравятся. Сделать фейерверк ярким, впечатляющим своими необычными мерцающими огнями помогают именно маленькие ракеты.

Но, оказывается, и в космонавтике ракеты маленького размера находят применение. Такими ракетами оснащаются ранцевые двигательные установки, надеваемые космонавтами поверх скафандра для перемещения и маневрирования в невесомости за пределами космического корабля.

Созданы также ракетные автомобили, позволяющие показывать рекордные результаты в гонках на максимальное ускорение.

Маленькие ракеты относительно просты в изготовлении, их могут создавать даже школьники, посещающие авиамодельные секции.

Обязательно прочитайте о том, как появились ракеты.

best-of-news.ru

Синонимы и антонимы «ракета» — анализ и ассоциации к слову ракета. Морфологический разбор и склонение слов

Перевод слова ракета

Мы предлагаем Вам перевод слова ракета на английский, немецкий и французский языки.
Реализовано с помощью сервиса «Яндекс.Словарь»


  • missile — снаряд, реактивный снаряд
    • баллистическая ракета — ballistic missile
    • космическая ракета — space rocket
  • launch — старт
  • flare — вспышка
    • сигнальная ракета — signal flare
  • Rakete — снаряд
    • баллистическая ракета — ballistische Rakete
  • Flugkörper — беспилотный летательный аппарат
  • Geschoß — снаряд
  • Projektil — снаряд
  • Tragflügelboot
  • missile — баллистическая ракета, реактивный снаряд, снаряд, оружие
    • баллистическая ракета — missile balistique
    • запуски ракеты — lancements de fusées
    • стрелять ракетами — tirer des roquettes
  • lanceur — пусковая установка
  • fusée volante
  • missile terrestre
  • M — корпус

Связь с другими словами

Слова заканчивающиеся на -ракета:

Гипо-гиперонимические отношения

действие приспособление аппарат ракета

Какой бывает ракета (прилагательные)?

Подбор прилагательных к слову на основе русского языка.

баллистической сигнальной осветительной первой крылатой ядерной красной зенитной межконтинентальной управляемой новой зеленой второй космической вражеской последней советской боевой маленькой американской самонаводящейся разведывательной курьерской противотанковой тяжелой тактической стратегической другой выпущенной белой живой русской мощной большей очередной разноцветной дальнобойной запущенной обычной фотонной грузовой немецкой сверхскоростной яркой оставшейся атомной следующей огромной собственной небольшой автоматической многоступенчатой неуправляемой настоящей кумулятивной межпланетной китайской пороховой гигантской серебристой приближающейся лунной двухступенчатой беспилотной

Что может ракета? Что можно сделать с ракетой (глаголы)?

Подбор глаголов к слову на основе русского языка.

взорваться ударить взлететь упасть лететь уйти устремиться угодить полететь достичь вылететь пролететь стоять стартовать погаснуть взвиться пойти подняться остаться врезаться идти находиться взмыть продолжать пробить исчезнуть сорваться разнести оказаться покинуть пронестись вырваться лежать поразить иметь рвануться разорваться превратиться найти попасть выйти улететь прорваться удариться вспыхнуть вернуться прочертить приближаться войти сбить отделиться приземлиться понестись зашипеть нести разрушиться взрываться опуститься нестись вывести влететь оторваться лечь потерять

Ассоциации к слову ракета

куб цель борт старт сторона земля луна космос шахта ракета небо марс боеголовка воздух шипение крыло турция европа корабль запуск орбита пуск территория помощь дальность место свист фейерверк головка спутник расстояние самолет рево случай база установка система подход пост курс парашют направление момент венера двигатель топливо скорость планета экипаж борьба центр юг позиция мир взлет здание мгновение мыс фон экран поверхность окно высота течение

Анаграммы слова ракета

карета

Гиперонимы слова ракета

  1. аппарат
  2. снаряд
  3. оружие
  4. судно

Гипонимы слова ракета

  1. мина

Сфера употребления слова ракета

Космонавтика Военный термин Техника Общая лексика Морской термин

Морфологический разбор (часть речи) слова ракета

Часть речи:

существительное

Число:

единственное

Одушевленность:

неодушевленное

Падеж:

именительный

Склонение существительного ракета

ПадежВопросЕд.числоМн. число
Именительный(кто, что?)ракетаракеты
Родительный(кого, чего?)ракетыракет
Дательный(кому, чему?)ракетеракетам
Винительный(кого, что?)ракетуракеты
Творительный(кем, чем?)ракетойракетами
Предложный(о ком, о чём?)ракетеракетах

Предложения со словом ракета

Пожалуйста, помогите нашему роботу осознать ошибки. Их пока много, но с вашей помощью их станет гораздо меньше. Вот несколько предложений, которые он сделал.

1. Стремительная ракета срочно попала в прошлая ад

плохо 7

хорошо 3

2. Разноцветная ракета чувствительно врезалась в другое дерево

плохо 7

хорошо 2

3. Космическая ракета совершенно вылетела из великолепной памяти

плохо 7

хорошо 2

4. Тактическая ракета немыслимо достигла в религиозное течение

плохо 8

хорошо 1

www.reright.ru

космические ракеты — Naked Science

Ракетные двигатели

Двигатели – важнейшая составная часть ракеты-носителя. Они создают силу тяги, за счет которой ракета поднимается в космос. Но когда речь идет о ракетных двигателях, не стоит вспоминать те, что находятся под капотом автомобиля или, например, крутят лопасти несущего винта вертолета. Ракетные двигатели совсем другие.
 

В основе действия ракетных двигателей – третий закон Ньютона. Историческая формулировка этого закона говорит, что любому действию всегда есть равное и противоположное противодействие, проще говоря – реакция. Поэтому и двигатели такие называются реактивными.

 
Реактивный ракетный двигатель в процессе работы выбрасывает вещество (так называемое рабочее тело) в одном направлении, а сам движется в противоположном направлении. Чтобы понять, как это происходит, не обязательно самому летать на ракете. Самый близкий, «земной», пример – это отдача, которая получается при стрельбе из огнестрельного оружия. Рабочим телом здесь выступают пуля и пороховые газы, вырывающиеся из ствола. Другой пример – надутый и отпущенный воздушный шарик. Если его не завязать, он будет лететь до тех пор, пока не выйдет воздух. Воздух здесь – это и есть то самое рабочее тело. Проще говоря, рабочее тело в ракетном двигателе – продукты сгорания ракетного топлива.

Модель ракетного двигателя РД-180 /© Wikipedia.  

 

Топливо

Топливо ракетных двигателей, как правило, двухкомпонентное и включает в себя горючее и окислитель. В ракете-носителе «Протон» в качестве горючего используется гептил (несимметричный диметилгидразаин), а в качестве окислителя – тетраксид азота. Оба компонента чрезвычайно токсичны, но это «память» о первоначальном боевом предназначении ракеты. Межконтинентальная баллистическая ракета УР-500 – прародитель «Протона», – имея военное предназначение, до старта должна была долго находиться в боеготовом состоянии. А другие виды топлива не позволяли обеспечить долгое хранение. Ракеты «Союз-ФГ» и «Союз-2» используют в качестве топлива керосин и жидкий кислород. Те же топливные компоненты используются в семействе ракет-носителей «Ангара», Falcon 9 и перспективной Falcon Heavy Илона Маска. Топливная пара японской ракеты носителя «H-IIB» («Эйч-ту-би») – жидкий водород (горючее) и жидкий кислород (окислитель). Как и в ракете частной аэрокосмической компании Blue Origin, применяемой для вывода суборбитального корабля New Shepard. Но это все жидкостные ракетные двигатели.
 
Применяются также и твердотопливные ракетные двигатели, но, как правило, в твердотопливных ступенях многоступенчатых ракет, таких как стартовый ускоритель ракеты-носителя «Ариан-5», вторая ступень РН «Антарес», боковые ускорители МТКК Спейс шаттл.
 

Ступени

Полезная нагрузка, выводимая в космос, составляет лишь малую долю массы ракеты. Ракеты-носители главным образом «транспортируют» себя, то есть собственную конструкцию: топливные баки и двигатели, а также топливо, необходимое для их работы. Топливные баки и ракетные двигатели находятся в разных ступенях ракеты и, как только они вырабатывают свое топливо, то становятся ненужными. Чтобы не нести лишний груз, они отделяются. Кроме полноценных ступеней применяются и внешние топливные емкости, не оснащенные своими двигателями. В процессе полета они также сбрасываются.
 
 

Первая ступень РН «Протон-М» /©ФГУП «ГКНПЦ имени М.В.Хруничева»

 
Существует две классические схемы построения многоступенчатых ракет: c поперечным и продольным разделением ступеней. В первом случае ступени размещаются одна над другой и включаются только после отделения предыдущей, нижней, ступени. Во втором случае вокруг корпуса второй ступени расположены несколько одинаковых ракет-ступеней, которые включаются и сбрасываются одновременно. В этом случае двигатель второй ступени также может работать при старте. Но широко применяется и комбинированная продольно-поперечная схема.
 
 

Варианты компоновки ракет /© Wikipedia

 
Стартовавшая в феврале этого года с космодрома в Плесецке ракета-носитель легкого класса «Рокот» является трехступенчатой с поперечным разделением ступеней. А вот РН «Союз-2», запущенная с нового космодрома «Восточный» в апреле этого года, – трехступенчатая с продольно-поперечным разделением.
 
Интересную схему двухступенчатой ракеты с продольным разделением представляет собой система Спейс шаттл. В ней и кроется отличие американских шаттлов от «Бурана». Первая ступень системы Спейс шаттл – боковые твердотопливные ускорители, вторая – сам шаттл (орбитер) с отделяемым внешним топливным баком, который по форме напоминает ракету. Во время старта запускаются двигатели как шаттла, так и ускорителей. В системе «Энергия – Буран» двухступенчатая ракета-носитель сверхтяжелого класса «Энергия» была самостоятельным элементом и помимо вывода в космос МТКК «Буран» могла быть применена и для других целей, например для обеспечения автоматических и пилотируемых экспедиций на Луну и Марс.
 

Разгонный блок

Может показаться, что как только ракета вышла в космос, то цель достигнута. Но это не всегда так. Целевая орбита космического аппарата или полезного груза может быть гораздо выше линии, от которой начинается космос. Так, например, геостационарная орбита, на которой размещаются телекоммуникационные спутники, расположена на высоте 35 786 км над уровнем моря. Вот для этого и нужен разгонный блок, который, по сути, является еще одной ступенью ракеты. Космос начинается уже на высоте 100 км, там же начинается невесомость, которая является серьезной проблемой для обычных ракетных двигателей.
 
Одна из основных «рабочих лошадок» российской космонавтики ракета-носитель «Протон» в паре с разгонным блоком «Бриз-М» обеспечивает выведение на геостационарную орбиту полезных грузов массой до 3,3 т. Но первоначально вывод осуществляется на низкую опорную орбиту (200 км). Хотя разгонный блок и называют одной из ступеней корабля, от обычной ступени он отличается двигателями.
 
 

РН «Протон-М» с разгонным блоком «Бриз-М» на сборке /©ФГУП «ГКНПЦ имени М.В.Хруничева»

 
Для перемещения космического аппарата или корабля на целевую орбиту или направления его на отлетную или межпланетную траекторию разгонный блок должен иметь возможность выполнить один или несколько маневров, при совершении которых изменяется скорость полета. А для этого необходимо каждый раз включать двигатель. Причем в периоды между маневрами двигатель находится в выключенном состоянии. Таким образом, двигатель разгонного блока способен многократно включаться и выключаться, в отличие от двигателей других ступеней ракет. Исключением являются многоразовые Falcon 9  и New Shepard, двигатели первых ступеней которых используются для торможения при посадке на Землю.
 

Полезная нагрузка

Ракеты существуют для того, чтобы что-то выводить в космос. В частности, космические корабли и космические аппараты. В отечественной космонавтике это транспортные грузовые корабли «Прогресс» и пилотируемые корабли «Союз», отправляемые к МКС. Из космических аппаратов в этом году на российских ракетах-носителях отправились в космос американский КА Intelsat DLA2  и французский КА Eutelsat 9B, отечественный навигационный КА «Глонасс-М» №53 и, конечно, КА «ЭкзоМарс-2016», предназначенный для поиска метана в атмосфере Марса.
 
Возможности по выводу полезной нагрузки у ракет разные. Масса полезной нагрузки РН легкого класса «Рокот», предназначенной для выведения космических аппаратов на низкие околоземные орбиты (200 км), – 1,95 т. РН «Протон-М» относится к тяжелому классу. На низкую орбиту он выводит уже 22,4 т, на геопереходную – 6,15 т, а на геостационарную – 3,3 т. «Союз-2» в зависимости от модификации и космодрома способен вывести на низкую околоземную орбиту от 7,5 до 8,7 т, на геопереходную орбиту – от 2,8 до 3 т и на геостационарную – от 1,3 до 1,5 т. Ракета предназначена для запусков со всех площадок Роскосмоса: Восточного, Плесецка, Байконура и Куру, используемого в рамках совместного российско-европейского проекта. Применяемая для запуска транспортных и пилотируемых кораблей к МКС, РН «Союз-ФГ» имеет массу полезного груза от 7,2 т (с пилотируемым кораблем «Союз») до 7,4 т (с грузовым кораблем «Прогресс»). В настоящее время это единственная ракета, применяемая для доставки космонавтов и астронавтов на МКС.
 
Полезная нагрузка, как правило, находится в самой верхней части ракеты. Для того чтобы преодолеть аэродинамическое сопротивление, космический аппарат или корабль помещается внутрь головного обтекателя ракеты, который после прохождения плотных слоев атмосферы сбрасывается.
 

Вошедшие в историю слова Юрия Гагарина: «Вижу Землю… Красота-то какая!» были им сказаны именно после сброса головного обтекателя ракеты-носителя «Восток».

 
 

Установка головного обтекателя РН «Протон-М», полезная нагрузка КА «Экспресс-АТ1» и «Экспресс-АТ2» /© Роскосмос

 

Система аварийного спасения

Ракету, которая выводит на орбиту космический корабль с экипажем, практически всегда можно отличить по внешнему виду от той, которая выводит грузовой корабль или космический аппарат. Чтобы в случае возникновения аварийной ситуации на ракете-носителе экипаж пилотируемого корабля остался жив, применяется система аварийного спасения (САС). По сути, это еще одна (правда, небольшая) ракета в головной части ракеты-носителя. Со стороны САС выглядит как башенка необычной формы на вершине ракеты. Ее задача – в экстренной ситуации вытянуть пилотируемый корабль и увести его от места аварии.
 
В случае взрыва ракеты на старте или в начале полета основные двигатели системы спасения отрывают ту часть ракеты, в которой находится пилотируемый корабль, и уводят ее в сторону от места аварии. После чего осуществляется парашютный спуск. В случае же если полет проходит нормально, после достижения безопасной высоты система аварийного спасения отделяется от ракеты-носителя. На больших высотах роль САС не так важна. Здесь экипаж уже может спастись благодаря отделению спускаемого аппарата космического корабля от ракеты.
 
 

РН «Союз» с САС в верхней части ракеты /© Роскосмос

naked-science.ru

Про современные ракеты-носители .

Запуск космических аппаратов на околоземные орбиты и осуществление полетов к Луне, планетам и другим телам Солнечной системы стало возможно после создания необходимых для этого многоступенчатых космических ракет – ракет-носителей (РН). Ракета (от итальянского rocchetta – веретено) – летательный аппарат, использующий принцип реактивного движения и способный летать не только в атмосфере, но и в вакууме.

Большинство современных ракет-носителей оснащаются химическими ракетными двигателями, которые используют твердое, жидкое или гибридное ракетное топливо. Основные компоненты топлива – жидкий кислород (окислитель) и керосин (горючее), кроме того, применяются четырехокись азота и несимметричный диметилгидразин, жидкие кислород и водород. Масса топлива составляет 85 – 90% от стартовой массы ракеты. Химическая реакция между горючим и окислителем проходит в камере сгорания двигателя, в результате получаются горячие газы, которые выбрасываются, создавая тягу, она и заставляет ракету двигаться. Основной энергетический показатель работы каждого ракетного двигателя – удельный импульс тяги (отношение тяги к расходу топлива в секунду). Например, один из мощных современных ракетных двигателей РД-701 (Россия) тягой 4 МН (408 тс) и удельным импульсом в вакууме 462 с расходует топливо со скоростью 491 кг/с. Стартующие с Земли РН позволяют запускать полезные нагрузки (ПН) со скоростью равной или выше первой космической – 7.9 км/с, то есть достаточной для выведения ИСЗ на низкие орбиты. Обычно ракета при выведении ПН на низкую околоземную орбиту движется на активном участке, то есть с работающими двигателями, примерно 10–15 мин. Если необходимо выведение ПН на более высокие орбиты или траектории полета к Луне и за пределы тяготения Земли, то еще раз включаются двигатели последней (верхней) ступени РН или разгонный блок после пассивного участка, длительность движения на котором зависит от выбранной траектории полета. КА переводится либо на геостационарную орбиту (высотой 36 тыс. км), либо на высокоэллиптические орбиты, либо на траекторию полета к Луне и планетам. Вторая космическая скорость в поле тяготения Земли (11.19 км/с) необходима для запуска АМС к планетам и другим телам Солнечной системы. Третья космическая скорость (16.7 км/с) достаточна, чтобы КА улетел за пределы Солнечной системы.

Современная многоступенчатая космическая ракета представляет собой сложное сооружение, состоящее из тысяч деталей и устройств. Разрабатываемые в настоящее время ракеты-носители соответствуют высочайшим критериям современной науки и техники, при их создании используются передовые технологии и вычислительная техника. Космические технологии оказывают значительное влияние на нашу жизнь, помогая внедрить новые материалы и сплавы, средства коммуникации, компьютерную технику и т.д. Ступени ракет-носителей содержат топливные баки с горючим и окислителем, двигательную установку (маршевые и рулевые двигатели). Полет ракеты регулируется бортовой системой управления движением. Схема расположения ступеней на РН различна. При продольном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая, весьма распространенная, схема применяется, например, на российских РН «Днепр» и «Протон-М», китайских «CZ-3/3A» и «CZ-4С», израильской «Shavit». Верхние ступени, доставляющие ПН на заданные орбиты, сейчас заменили разгонными блоками, например, российские ДМ, «Бриз-М» (РН «Протон») и «Фрегат» (РН «Союз-ФГ»). В отличие от продольной, в поперечной схеме («пакетная») несколько блоков первой ступени симметрично располагаются вокруг корпуса второй ступени. Таких РН немного и они бывают двухступенчатыми, например, советская «Спутник» (1957 – 1958) и американские «Atlas-B/D» (1958 – 1963). Широко используется комбинированная схема – продольно-поперечная, позволяющая совместить преимущества обеих схем. К ним относятся отечественные ракеты-носители «Восток», «Союз» и «Энергия», американские «Titan-3/4» и «Delta-4Н», европейская «Ariane-5», японские «H-II/IIA», индийская «GSLV». По особой схеме устроена американская многоразовая транспортная космическая система «Спейс Шаттл», первая ступень которой – два твердотопливных ускорителя, а вторая ступень – пилотируемый космический корабль с внешним сбрасываемым топливным баком.

Маршевая двигательная установка корабля расходует топливо из внешнего бака; когда оно исчерпано, бак сбрасывается. Далее работают другие двигатели корабля (маневрирования и ориентации), они же используются для маневров в космосе и торможения во время посадки. Современные ракеты-носители, как правило, имеют не более четырех ступеней. Чтобы улучшить энергетические характеристики РН, применяются стартовые ускорители, работающие, в основном, на твердом топливе. На участке полета в плотных слоях атмосферы ПН и разгонный блок, как правило, закрыты головным обтекателем, который сбрасывается в разреженных слоях атмосферы. В зависимости от энергетических характеристик и способности выводить на низкую околоземную орбиту ПН определенной массы ракеты-носители условно разделяются на классы: легкие (масса ПН до 4 т), средние (до 20 т), тяжелые (20 – 30 т) и сверхтяжелые (более 30 т). К основным характеристикам РН относятся: внешние габариты (максимальные высота и диаметр), используемый на ступенях тип топлива, число ступеней, разгонных блоков и стартовых ускорителей, стартовая масса, тяга двигательных установок на уровне моря (стартовая), максимальная масса ПН на низкой околоземной орбите. Стартовая тяга двигательной установки РН обычно выражается в меганьютонах (1 МН = 102 тс). Например, у гагаринского носителя «Восток» суммарная тяга достигала 3.4 МН = 347 тс (мощность двигательной установки – 15 х 106 кВт, или 2 х 107 л.с.).

В начале космической эры ракеты-носители были только у СССР и США. В настоящее время собственными РН обладают шесть стран (Россия, США, Китай, Япония, Индия и Израиль) и две международные корпорации – «Arianespace» (ESA) и «Морской старт». Первые спутники с помощью собственных ракет-носителей запустили в 1957 – 1958 гг. СССР и США, в 1970 г. к ним присоединились КНР и Япония, в 1979 – 1980 гг. — ESA и Индия, в 1988 г. – Израиль. В 1999 г. впервые стартовала РН «Зенит-3SL» с морской платформы «Одиссей» по программе «Морской старт».

Россия

 

 

К числу современных наиболее мощных отечественных ракет-носителей относятся «Союз-2», «Днепр» и «Протон-М».

Носитель среднего класса «Союз-2» (высота 50.7 м, диаметр 10.3 м, топливо – керосин + жидкий кислород, три ступени и разгонный блок «Фрегат», стартовые масса – 308.6 т и тяга – 3.8 МН, ПН – до 9 т) заменит старые РН «Союз» и «Молния», будет запускать КА на различные орбиты, пилотируемые и грузовые корабли на МКС. На ней используется новая цифровая система управления, модифицированные ЖРД и большой головной обтекатель (диаметр 4.1 м и длина 11.4 м). Запуски РН производятся с 2004 г. 19 октября 2006 г. она запустила с космодрома Байконур метеорологический ИСЗ «Metop-А» европейской организации «Eumetsat» (масса 4 т), через два месяца оттуда же она стартовала с французской космической обсерваторией «Corot», а с Плесецка вывела новый российский спутник связи «Меридиан» (масса 2 т).

РН «Днепр» (высота 34.3 м, диаметр 3.0 м, топливо – азотный тетроксид + несимметричный диметилгидразин, три ступени, стартовые масса – 207 – 211 т и тяга – 2.8 МН, ПН – до 4 т) создана в КБ «Южное» (Украина) на базе МБР Р-36М (РС-20А). Она обладает высокими энергетическими возможностями, точностью выведения и надежностью в полете. Программа реализуется международной компанией «Космотрас» (Россия и Украина). Стартует РН из шахтного транспортно-пускового контейнера, двигательная установка первой ступени запускается после покидания шахты. Первый запуск осуществлен 21 апреля 1999 г. с космодрома Байконур (английский научный спутник «UoSAT-12»). 17 апреля 2007 г. она запустила сразу 14 микроспутников разных стран.

На модифицированной РН «Протон-М» (высота 52 – 58.2 м, диаметр 7.4 м, топливо – азотный тетроксид + несимметричный диметилгидразин, три ступени и разгонный блок «Бриз-М», стартовые масса – 700 – 710 т и тяга – 11.8 МН, ПН – до 24 т) используются новые агрегаты и системы. Большие головные обтекатели (диаметр 5 м) позволяют более чем вдвое увеличить объем для размещения ПН и конкурировать с зарубежными носителями, например с РН «Ariane-5», а также использовать ряд перспективных разгонных блоков. При первом старте 7 апреля 2001 г. с космодрома Байконур «Протон-М» вывела геостационарный спутник связи «Экран М-4», созданный в НПО ПМ. 11 февраля 2008 г. она вывела на геостационарную орбиту норвежский ИСЗ связи «Thor-5» (масса 2 т), а 15 марта – американский «АМС-14» (масса 4.1 т) того же назначения. С помощью «Протона-М» запускаются спутники «Глонасс М» отечественной навигационной системы.

В настоящее время создается семейство ракет-носителей «Ангара». За основу нового поколения носителей взят универсальный ракетный модуль с кислородно-керосиновыми двигателями. В серию «Ангара» войдут носители от легкого до тяжелого классов в диапазоне грузоподъемности от 1.5 т до 28 т. Перспективную РН тяжелого класса «Ангара-5А» (длина 54.3 – 63.9 м, диаметр 10.6 м, топливо – керосин + жидкий кислород, три ступени и разгонный блок «Бриз-М» или КВРБ, стартовые масса – 773 – 790 т и тяга – 12.2 МН, ПН – 24.5 – 28 т) планируют запускать с 2015 г. с космодрома Байконур.

США

 

 

Многоразовая транспортная система «Спейс Шаттл» (высота 56.3 м, диаметр 16.6 м, топливо – жидкий водород + жидкий кислород, одна ступень и стартовые ускорители, стартовые масса – до 2063 т и тяга – 28.6 МН, КК – до 122 т, в том числе ПН – до 22 т) эксплуатируется с апреля 1981 г. Изготовлено шесть кораблей («Интерпрайз», «Колумбия», «Челленджер», «Дискавери», «Атлантис», «Индевор»), из них два потерпели катастрофу: «Челленджер» (28 января 1986 г.) и «Колумбия» (1 февраля 2003 г.). Всего совершено 123 полета, в том числе 26 в рамках строительства МКС. С помощью кораблей «Спейс Шаттл» запущены различные ИСЗ, АМС «Магеллан», «Галилео» и «Улисс», космический телескоп им. Хаббла (КТХ), лабораторные блоки «Спейслэб». На орбите ремонтировался КТХ, возвращались КА на Землю, производились стыковки с ОК «Мир»; на МКС доставлялись модули, грузы и экипажи.

Новая РН среднего класса «Atlas-5» (высота 58 – 59.4 м, диаметр 5.1 м, топливо – керосин + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 435 т и тяга – 6.8 МН, ПН – до 20 т) создана на базе «Atlas-II» компанией «Lockheed Martin Asronautic» в связи с увеличением массы коммерческих КА. На первой ступени установлен российский РД-180 – один из самых мощных маршевых ЖРД в мире (тяга в вакууме 4.1 МН). С 2002 г. «Atlas-5» запускает с космодрома Канаверал в основном геостационарные связные и военные спутники. 19 января 2006 г. с ее помощью АМС «Новые горизонты» стартовала к Плутону и развила пока наибольшую в мире скорость 17.62 км/с.

Самая большая по грузоподъемности американская одноразовая РН «Delta-4 Heavy» (высота 68.1 – 71.6 м, диаметр 15.3 м, топливо – керосин + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 725.6 т и тяга – 9.2 МН, ПН – до 25.8 т) создана компанией «Boeing». Она запускается с декабря 2004 г. с космодрома Канаверал. 11 ноября 2007 г. она вывела военный спутник (масса 3.4 т) на геостационарную орбиту. С 2010 г. ее старты планируются с космодрома Ванденберг (шт. Калифорния).

В настоящее время NASA проектирует еще более мощные ракеты-носители — «Ares-1» (высота 54 – 67 м, диаметр 5.6 м, топливо – жидкий водород + жидкий кислород, две ступени, стартовые масса – 530 – 780 т и тяга – 8.7 МН, ПН – до 26 т) и «Ares-5» (высота 116 м, диаметр 15.3 м, топливо – жидкий водород + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 2500 – 2780 т и тяга – 33.7 МН, ПН – до 137 т). Эти РН должны стать частью эффективной транспортной инфраструктуры, которая разрабатывается NASA в рамках программы «Constellation» («Созвездие»). «Ares-1» – основное средство выведения на околоземную орбиту полезных грузов и нового пилотируемого КК «Орион». «Ares-5» способен запускать к Луне ПН массой до 71 т: посадочный модуль с экипажем, крупногабаритные конструкции, жилые блоки и расходуемые материалы для строительства постоянной лунной базы. Летные испытания РН «Ares-1» запланированы на 2012 г., первый полет экипажа на МКС – 2014 г. «Ares-1» и «Ares-5» будут применяться для лунных (начиная с 2020 г.) и марсианских экспедиций (намечена на 2030 г.).

«Арианспейс» (ЕSА)

 

Наиболее мощный носитель Европейского космического агентства РН тяжелого класса «Ariane-5» (высота 54.5 м, диаметр 10.3 м, топливо – жидкий водород + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 718 т и тяга – 11.8 МН, ПН – до 21 т). На ракете применяется самый крупный головной обтекатель диаметром 5.4 м и длиной 17 м. Первый старт с космодрома Куру состоялся 4 июня 1996 г. и оказался неудачным. Второй экспериментальный пуск 30 октября 1997 г. прошел успешно (запущены три ИСЗ). РН выводит в основном телекоммуникационные ИСЗ (общей массой до 8 т) на геостационарную орбиту. 9 марта 2008 г. РН «Ариан-5ES» вывела на орбиту первый грузовой корабль (ATV) «Жюль Верн» массой 9.7 т, позднее состыковавшийся с МКС.

«Морской старт»

По международной программе «Морской старт» («Sea Launch») для запусков КА с морской платформы из района экватора в Тихом океане применяется российско-украинская РН «Зенит-3SL», созданная на базе носителя «Зенит-2» и разгонного блока «ДМ». Ее характеристики: высота 59.6 м, диаметр 4.2 м, топливо – керосин + жидкий кислород, три ступени, стартовые масса – 470.8 т и тяга – 7.4 МН, ПН – до 13.8 т. С помощью этого носителя запускаются с 1999 г. коммерческие спутники связи.

Китай

 

Китай использует для запусков ПН ракеты-носители серии «Chang Zheng» («Великий поход»). РН среднего класса «CZ-3В» (высота 54.8 м, диаметр 11.8 м, топливо – азотный тетроксид + несимметричный диметилгидразин, три ступени и стартовые ускорители, стартовые масса – 426 т и тяга – 8.1 МН, ПН – 13.6 т) используется в настоящее время для запусков с космодрома Сичан китайских телекоммуникационных ИСЗ и спутников других стран на геостационарную орбиту.

Самая мощная китайская РН тяжелого класса «CZ-4С» (высота 53.2 м, диаметр 4.1 м, топливо – жидкий водород + жидкий кислород, три ступени, стартовые масса – 440 т и тяга – 9.3 МН, ПН – до 21 т) с космодрома Тайюань запускает с 1999 г. метеорологические и океанографические спутники, а также военные КА.

Япония

 

Наиболее мощный носитель среднего класса «Н-II» был создан компанией «Rocket System Corporation» в рамках реализации космической программы Японии. Первые три пробных пуска в 1994 – 1995 гг. прошли успешно. На ее основе разработана РН «Н-IIА» с жидкостными стартовыми ускорителями (длина 52.5 м, диаметр 8.2 м, топливо – жидкий водород + жидкий кислород, три ступени и стартовые ускорители, стартовые масса – 410 т и тяга – 8.3 МН, ПН – до 15 т). Она запускается с 2001 г. с космодрома Йосинобу вблизи космического центра Танегасима. ПН представляют собой геостационарные телекоммуникационные и военные спутники массой до 4.8 т. 14 сентября 2007 г. с ее помощью к Луне запущена АМС «Кагуя».

Индия

С 1986 г. фирмой «Hindustan Aeronautics» под руководством индийского космического агентства ISRO разрабатывалась РН среднего класса «GSLV» (Geosynchronous Satellite Vehicle – носитель для выведения спутников на геостационарную орбиту; высота 50.9 м, диаметр 8.6 м, топливо – жидкий водород + жидкий кислород, две ступени и стартовые ускорители, стартовые масса – 402 – 414 т и тяга – 6.8 МН, ПН – до 13 т). 18 апреля 2001 г. с космодрома Шрикарикота осуществлен первый запуск на геостационарную орбиту спутника связи «G-SAT-1» (Индия).

Израиль

Разработку и производство единственной израильской РН «Shavit» («Метеор») осуществляет компания «Israel Aircraft Industries Ltd». Это прототип твердотопливной баллистической ракеты «Jericho-2» с добавленной третьей ступенью, созданной в Израиле в начале 1980-х гг. РН «Shavit» легкого класса (длина 18.2 м, диаметр 1.4 м, топливо – твердое, три – четыре ступени, стартовые масса – 22 т и тяга – 0.5 МН, ПН – до 0.3 т) запускает с 1988 г. с космодрома Пальмачим в основном национальные разведывательные спутники «Ofeg» (горизонт). 10 июня 2007 г. выведен очередной ИСЗ («Ofeg-7») массой 300 кг.

По материалам Роскосмос, РКК «Энергия» им. С.П. Королёва, «ЦСКБ – Прогресс», ГКНПЦ им. М.В. Хруничева, NASA, ESA, CASC, JAXA, ISRO и IAI.

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

cosmos.mirtesen.ru

Авиационные ракеты «воздух-воздух»: основные характеристики

Для борьбы с воздушными целями предназначаются ракетные системы различных типов. Огромное разнообразие вооружения в первую очередь классифицируются по месту старта и местоположению цели. Например: “земля-воздух” — ракета наземного базирования (первое слово) для уничтожения объектов в воздушном пространстве (второе слово). Этот тип боеприпасов чаще всего именуется зенитным, то есть стреляющим в зенит – вверх. Значительная скорость ракеты “земля-воздух”, более чем в четыре раза превышающая скорость звука, позволяет эффективно бороться не только с самолетами и баллистическими ракетами, но и поражать высокоманевренные крылатые ракеты.

Авиационное вооружение

Вооружение современного боевого самолета представляет собой интегрированный высокотехнологичный комплекс нескольких систем, который условно состоит из системы управления и непосредственно подвесного и встроенного вооружения. Реактивные снаряды, предназначенные для запуска с воздушных подвижных платформ и поражения воздушных летательных аппаратов, в соответствии с отечественной системой классифицируются как ракеты “воздух-воздух” (В-В). На Западе для боеприпасов подобного класса принята в употреблении аббревиатура AAM от английского сочетания air-to-air missile. Эффективные образцы этого вооружения впервые появились в середине сороковых годов прошлого века. Первые отечественные самонаводящиеся боеприпасы были скопированы с американской ракеты “воздух-воздух”. Россия в настоящее время в этой области боевых технических средств признана безусловным лидером. Некоторые системы не имеют аналогов даже среди разрабатываемых зарубежных комплексов.

Дистанция атаки

По расстоянию, на котором уничтожается объект в воздухе, ракеты “воздух-воздух” подразделяются на несколько классов. Авиационные боеприпасы создаются для применения на трех видах дистанций боя:

  • Для уничтожения летательных аппаратов в пределах прямой видимости используются ракеты малой дальности. Эти боеприпасы оснащаются инфракрасными приборами самонаведения. Принятое обозначение стран НАТО – SRAAM.
  • На дистанциях до 100 км применяются ракеты средней дальности (MRAAM) с радиолокационной системой самонаведения.
  • Боеприпасы, применяющиеся на расстояниях до 200 км, большой дальности (LRAAM), имеют комплексную систему наведения, использующую разные принципы на марше и на конечном участке атаки.

Классифицируя таким образом по принципу дальнобойности, разработчики считают, что на заданных расстояниях ракета сможет гарантированно поразить цель. На языке специалистов это называется эффективной дистанцией стрельбы.

Системы наведения на цель

В головной части ракеты помещается измерительная аппаратура, позволяющая автономно, те есть без участия оператора, навести снаряд на цель и поразить ее. Автоматическое устройство на фоне окружающих физических полей способно определить цель, параметры ее движения, перемещение самой ракеты и сформировать команды для системы управления при необходимости совершения маневра. Системы самонаведения ракеты “воздух-воздух” используют различные виды излучений цели: оптические, акустические, инфракрасные, радиоизлучения. По месту расположения источника излучения, комплексы наведения бывают:

  • Пассивные – используют излучаемые целью сигналы.
  • Для полуактивных головок необходим отраженный от цели сигнал, излучаемый самолетом-носителем.
  • Активные сами подсвечивают цель, для чего снабжаются штатными передатчиками сигналов.

Поражающие элементы и детонаторы

В воздушной среде, особенно на больших высотах, фугасное действие взрывчатого вещества малоэффективно. Авиационные ракеты “воздух- воздух” вооружаются боевой частью осколочно-фугасного действия. Вследствие большой скорости перемещения как цели, так и самой ракеты, к боевой части применяются жесткие требования по формированию поражающей сферы. Необходимого результата можно добиться применив систему заданного дробления на осколки либо готовые поражающие элементы (шарики, стержни). В большинстве изделий используется вариант, формирующий радиальное поле из осколков цилиндрической боевой части, осколочной рубашки. При разлете поражающие элементы образуют конус с усеченной вершиной с направлением движения, попутным ракете.

Планируемое разделение на поражающие осколки достигается посредством точечной закалки лазером или высокочастотными токами, нанесением насечек или «маски» из инертного материала. Осколочными поражающими элементами оснащаются боевые части ракет ближнего боя. В ракетных системах средней дальности применяется боевая часть, сформированная из стержней. Поражающие элементы располагаются наклонно вокруг взрывчатого вещества и между собой попеременно свариваются верхними и нижними концами. При раскрытии стержни образуют замкнутое кольцо большой поражающей силы. Ведутся перспективные разработки по управлению формированием и направлением действия осколочного поля.

Подрыв боевой части на оптимальном расстоянии осуществляется радиолокационным взрывателем, оснащенным одной или двумя антеннами. Современные ракеты класса “воздух-воздух” оснащаются лазерными установками, непрерывно отслеживающими расстояние до цели. На всех ракетах имеется инерционный детонатор на случай прямого попадания в цель.

На страже воздушных просторов

Для нашей страны, с ее огромными расстояниями и слаборазвитой наземной инфраструктурой на восточном и северном направлениях, ключевым звеном обеспечения обороноспособности являются ракеты “воздух-воздух”. Россия, совершив в последние годы технологический рывок, обладает целым спектром высокоэффективных боеприпасов. Отечественные ракеты предназначены не только для оснащения существующих летательных аппаратов, но и перспективных пилотируемых и беспилотных авиационных комплексов, принятие на вооружение которых ожидается в ближайшем будущем. Современные российские самолеты оснащены некоторыми типами ракет. О них будет сказано дальше.

Управляемая ракета Р-73 малой дальности

Изделие принято на вооружение в 1983 году, в натовской классификации AA-11 «Archer». Предназначается для уничтожения активно маневрирующих пилотируемых и беспилотных целей на максимальной скорости до 2 500 км/ч днем и ночью в любых погодных условиях в передней и задней полусферах. Для стрельбы по преследующим целям используется режим обратного старта. Двигатель с изменяемым вектором тяги и другие ноухау позволили превзойти все существующие мировые аналоги по маневренности. Возможно использование против неуправляемых аэростатов, вертолетов и крылатых ракет. Ракета входит в штатный комплект вооружения МиГ-29 и Су-27 последних модификаций, а также тактических бомбардировщиков Су-34 и штурмовиков Су-25. Производится в двух вариантах модификаций РМД-1 и РМД-2. Может использоваться для борьбы с крылатыми ракетами. Ракета поставляется на экспорт. Боеприпас обладает следующими характеристиками:

  • Масса — 110 кг.
  • Длина — 2,9 м.
  • Масса стержневой боевой части 8 кг.
  • Дальность пуска — 40 км (РМД 2).

Ракета ближнего маневренного боя РВВ-МД

Новейший боеприпас имеет всеракурсное инфракрасное наведение. Применение аэрогазодинамической системы маневрирования позволяет уничтожать цели с любых направлений. Предполагается, что этим образцом будут вооружаться все типы самолетов истребительной авиации и вертолеты. РВВ-МД и ракета “воздух-поверхность” Х-38 составят основу боевой мощи истребителя пятого поколения.

  • Стартовый вес не более 106 кг.
  • Длина ракеты — 2,92 м.
  • Масса боевой части со стержневым поражающим элементом — 8 кг.
  • Дистанция поражения целей до 40 км.

Авиационные ракеты “воздух-воздух” Р-27

Управляемый боеприпас создавался для вооружения истребителей четвертого поколения. По натовской классификации АА-10 «Alamo». Специфический боеприпас предназначен для уничтожения самолетов противника в ближнем маневренном бою и на средних дистанциях при максимальной скорости цели до 3 500 км/ч. Применена новая концепция управления и твердотопливный двигатель. На некоторых модификациях используются ускорители. Скорость ракеты “воздух-воздух” Р-27 в четыре с половиной раза превышает скорость звука. Характеристики в зависимости от модификации следующие:

  • Масса различных образцов колеблется от 250 до 350 кг.
  • Максимальная длина от 3,7 до 4,9 м.
  • Масса боевой части стержневого типа — 39 кг.
  • Дальность поражения объектов от 50 до 110 км.

Авиационная ракета Р-77 средней дальности

Проектировалась для истребителя пятого поколения МиГ – 1.42, так и не пошедшего в серию. Западное наименование АА-12 «Adder». Принята на вооружение в 1994 году. Оснащена мощным двигателем и самыми совершенными радиолокационным и инфракрасным комплексами наведения. Предназначена для уничтожения движущихся и статичных воздушных объектов всех типов, в том числе крылатых ракет, летящих с огибанием рельефа местности, на фоне земли и морской поверхности во всех диапазонах высот. Радиус действия модификации с твердотопливными ускорителями достигает 160 км.

  • Масса — 700 кг.
  • Длина изделия – 3,5 м.
  • Масса стержневой боевой части с мультикумулятивными элементами — 22 кг.
  • Максимальная дальность поражения объектов — 100 км.

На базе этого боеприпаса создана модификация “земля-воздух”. Ракета наземного базирования отличается большим диаметром двигателя.

Самонаводящаяся ракета РВВ-СД средней дальности

Новейший образец вооружения отечественных самолетов предназначен для уничтожения целей всех типов, в том числе и крылатых ракет на высотах до 25 км в условиях интенсивного радиолокационного противодействия противника. Применен активный комплекс наведения с использованием инерциальной радиокоррекции. Детонационное устройство использует лазерный неконтактный датчик.

  • Стартовый вес до 190 кг.
  • Длина – 3,7 м.
  • Тип боевой части — мультикумулятивная стержневая, масса – 22,5 кг.
  • Дистанция пуска до 110 км.

Ракета РВВ-АЕ среднего радиуса действия

Этот вариант ракеты создан для оснащения истребителей четвертого ++ поколения и предназначен для борьбы со всеми существующими типами летательных аппаратов, в том числе и крылатыми ракетами. Боеприпас может использоваться в любое время суток над сушей и акваторией моря в прибрежной зоне. Разработчиками предусмотрена установка на иностранные типы самолетов. В качестве детонатора применен бесконтактный лазерный взрыватель. Для маневрирования применяются решетчатые рули с электроприводом – техническое устройство аналогов в мире не имеет.

  • Максимальный стартовый вес — 180 кг.
  • Наибольшая длина – 3,6 м.
  • Боевая часть стержневая мультикумулятивная, масса — 22,5 кг.
  • Дистанция стрельбы до 80 км.

Управляемая ракета Р-33 большой дальности

Предназначена для вооружения истребителей-перехватчиков территориальной ПВО со слаборазвитой наземной инфраструктурой. В натовских справочниках обозначается как AA-9 «Amos». В комплексе с МиГ-31-33 была принята на вооружение в начале 80-х годов и составила один из элементов многоканальной системы перехвата «Заслон». Комплекс позволяет одновременно использовать весь боекомплект звена из 4-х самолетов. При этом радиолокационное оборудование самолетов и полуактивная ГСН ракеты предоставляют возможность одновременно поражать четыре объекта четырьмя ракетами. Р-33 создана для уничтожения самолетов и низколетящих крылатых ракет при любых погодных условиях, на фоне земли во всех диапазонах высот и скоростей и обладает следующими техническими данными:

  • Масса — 490 кг.
  • Длина — 4,15 м.
  • Масса осколочно-фугасной боевой части 47 кг.
  • Дальность пуска – 120 км, при дополнительном подсвечивании цели – до 300 км.

«Длинная рука» Р-37

На базе Р-33 для вооружения новейшего комплекса перехвата на основе Миг-31БМ разработана ракета большой дальности Р-37. В некоторых источниках именуется РВВ-БД и К-37. По натовской классификации AA-13 «Arrow». Испытания последних образцов завершены в 2012 году. При ее создании использован новый двухрежимный двигатель на твердом топливе и новейшая аппаратура управления и наведения. Во время испытаний поразила цель на рекордном расстоянии 307 км.

  • Стартовая масса различных модификаций от 510 до 600 кг.
  • Длина ракеты — 4,2 м.
  • Боевая часть — осколочно-фугасная, вес — 60 кг.
  • Дальность ракеты “воздух-воздух” Р-73 — 300 км, в экспортном исполнении — 200 км.

Превосходство останется за нами

Поступление на вооружение российской армии высокотехнологичных изделий в последние годы позволило значительно опередить западные державы. Разрабатываемые управляемые ракеты “воздух-воздух” будут оснащаться еще более мощными бортовыми вычислительными комплексами и быстродействующими сигнальными процессорами. Новое поколение ракет будет способно не просто отслеживать цель в условиях сильного радиолокационного и инфракрасного противодействия, но и осуществлять скрытое сопровождение атакуемого воздушного объекта.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *