Последовательность формирования солнечной системы – Формирование и эволюция Солнечной системы — Википедия

Содержание

Формирование и эволюция Солнечной системы – Журнал «Все о Космосе»

Протосолнце и протопланеты в представлении художника

Согласно современным представлениям, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды —Солнца. Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы.

Формирование

Гипотеза об образовании Солнечной системы из газопылевого облака — небулярная гипотеза — первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (экзопланет), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва сверхновой, и др.), которое стало центром гравитационного притяжения для окружающего вещества — центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться — сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
  • Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась реакция термоядерного синтеза гелия из водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Последующая эволюция

Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX — начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, пояс Койпера был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем Меркурий.

Планеты земного типа

Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну

В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого т.н. гигантского столкновения (возможно, с гипотетической планетой Тейя) был рождён спутник Земли Луна. Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела, известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Пояс астероидов

Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а.е. от Солнца и представляет собой пояс астероидов. Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между Марсом и Юпитером (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, единой протопланеты-источника астероидов не было. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2-3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20-30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и Сатурном, а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.

По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Эта величина, однако, в 10-20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.

Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6·1021 кг). Дело в том, что вода — слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно, именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также кометы главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.

Планетная миграция

В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. Уран и Нептун, «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.

Симуляция, показывающая расположение внешних планет и пояса Койпера: a) Перед орбитальным резонансом 2:1 Юпитера и Сатурна b) Разбрасывание объектов древнего пояса Койпера по Солнечной системе после сдвига орбиты Нептуна c) После выбрасывания Юпитером объектов пояса Койпера за пределы системы

Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, Рассеянный диск и облако Оорта, представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30-55 а.е. от Солнца, рассеянный диск начинается в 100 а.е. от Солнца, а облако Оорта — в 50 000 а.е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а.е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15-20 а.е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца чем Нептун.

После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500—600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера вовнутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая Плутон, со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.

Существует также гипотеза о пятом газовом гиганте, претерпевшем радикальную миграцию и вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или даже за её пределы (ставшим планетой-сиротой).

Подтверждение теории о массивной планете за орбитой Нептуна нашли Констанин Батыгин и Майкл Браун 20 января 2016 года на основе орбит шести транснептуновых объектов. Её масса, использующаяся в расчётах составляла примерно 10 земных масс, а оборот вокруг Солнца предположительно занимал от 10.000 до 20.000 земных лет.

Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500—600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад — почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера—Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов)
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
  • захват пролетающего объекта

Юпитер и Сатурн имеют много спутников, таких как Ио, Европа, Ганимед и Титан, которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Будущее

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца с главной последовательности диаграммы Герцшпрунга — Рассела в фазу красного гиганта. Однако и в фазе главной последовательности звезды Солнечная система продолжает эволюционировать.

Долговременная устойчивость

Солнечная система является хаотичной системой, в которой орбиты планет непредсказуемы на очень длинном отрезке времени. Одним из примеров такой непредсказуемости является система Нептун-Плутон, находящаяся в орбитальном резонансе 3:2. Несмотря на то, что сам по себе резонанс будет оставаться стабильным, невозможно предсказать хоть с каким-нибудь приближением положение Плутона на орбите более чем на 10-20 миллионов лет (время Ляпунова). Другим примером может служить наклон оси вращения Земли, который по причине трения внутри Земной мантии, вызванного приливными взаимодействиями с Луной, невозможно высчитать начиная с некоторого момента между 1.5 и 4.5 миллиардами лет в будущем.

Орбиты внешних планет хаотичны на больших временных масштабах: их время Ляпунова составляет 2-230 миллионов лет. Это не только означает, что позицию планеты на орбите начиная с этого момента в будущем невозможно определить хоть с каким-нибудь приближением, но и орбиты сами по себе могут экстремально измениться. Наиболее сильно хаос системы может проявиться в изменении эксцентриситета орбиты, при котором орбиты планет становятся более или менее эллиптическими.

Солнечная система является устойчивой в том смысле, что никакая из планет не может столкнуться с другой или быть выброшенной за пределы системы в ближайшие несколько миллиардов лет. Однако за этими временными рамками, например, в течение 5 миллиардов лет, эксцентриситет орбиты Марса может вырасти до значения 0,2, что приведёт к пересечению орбит Марса и Земли, а значит, и к реальной угрозе столкновения. В этот же период времени эксцентриситет орбиты Меркурия может увеличиться ещё больше, и впоследствии близкое прохождение около Венеры может выбросить Меркурий за пределы Солнечной системы, или вывести на курс столкновения с самой Венерой или с Землёй.

Спутники и кольца планет

Эволюция лунных систем планет определяется приливными взаимодействиями между телами системы. Из-за разности силы гравитации, воздействующей на планету со стороны спутника, в разных её областях (более удалённые области притягиваются слабее, в то время как более близкие — сильнее), форма планеты изменяется — она как бы слегка вытягивается в направлении спутника. Если направление обращения спутника вокруг планеты совпадает с направлением вращения планеты, и при этом планета вращается быстрее чем спутник, то этот «приливный бугор» планеты будет постоянно «убегать» вперёд по отношению к спутнику. В этой ситуации угловой момент вращения планеты будет передаваться спутнику. Это приведёт к тому, что спутник будет получать энергию и постепенно удаляться от планеты, в то время как планета будет терять энергию и вращаться все медленнее и медленнее.

Земля и Луна являются примером такой конфигурации. Вращение Луны приливно-закреплено по отношению к Земле: период обращения Луны вокруг Земли (в настоящее время примерно 29 дней) совпадает с периодом вращения Луны вокруг своей оси, и поэтому Луна всегда повёрнута к Земле одной и той же стороной. Луна постепенно отдаляется от Земли, в то время как вращение Земли постепенно замедляется. Через 50 миллиардов лет, если они переживут расширение Солнца, Земля и Луна станут приливно-закреплены по отношению друг к другу. Они войдут в так называемый спин-орбитальный резонанс, при котором Луна будет обращаться вокруг Земли за 47 дней, период вращения обоих тел вокруг своей оси будет одинаков, и каждое из небесных тел будет всегда видимо только с одной стороны для своего партнёра.

Другими примерами такой конфигурации являются системы Галилеевых спутников Юпитера, а также большинство крупных лун Сатурна.

Нептун и его спутник Тритон, заснятый при пролёте миссии Вояджер-2. В будущем, вероятно, этот спутник будет разорван на части приливными силами, породив новое кольцо вокруг планеты.

Иной сценарий ожидает системы, в которых спутник движется вокруг планеты быстрее, чем она вращается вокруг себя, или в которых спутник движется в направлении противоположном направлению вращения планеты. В таких случаях приливная деформация планеты постоянно отстаёт от позиции спутника. Это меняет направление переноса углового момента между телами на противоположное. что в свою очередь приведёт к ускорению вращения планеты и сокращению орбиты спутника. С течением времени спутник будет приближаться по спирали к планете, пока в какой-то момент либо не упадёт на поверхность или в атмосферу планеты, либо не будет разорван приливными силами на части, породив таким образом планетарное кольцо. Такая судьба ожидает спутник Марса Фобос (через 30—50 миллионов лет), спутник Нептуна Тритон (через 3,6 миллиарда лет), Метиду и Адрастею Юпитера, и, как минимум, 16 мелких лун Урана и Нептуна. Спутник Урана Дездемона при этом может быть даже столкнётся с луной-соседкой.

Ну и, наконец, в третьем типе конфигурации планета и спутник приливно-закреплены по отношению друг к другу. В этом случае «приливный бугор» расположен всегда точно под спутником, передача углового момента отсутствует, и, как следствие, орбитальный период не меняется. Примером такой конфигурации является Плутон и Харон.

До экспедиции космического аппарата “Кассини — Гюйгенс” в 2004 году считалось, что кольца Сатурна намного моложе Солнечной системы, и что они просуществуют не более чем 300 миллионов лет. Предполагалось, что гравитационные взаимодействия с лунами Сатурна будут постепенно передвигать внешний край колец ближе к планете, в то время как гравитация Сатурна и бомбардирующие метеориты закончат начатое, полностью расчистив пространство вокруг Сатурна. Однако данные с миссии “Кассини” заставили учёных пересмотреть эту точку зрения. Наблюдения зарегистрировали ледяные глыбы материала до 10 км в диаметре, находящиеся в постоянном процессе дробления и переформирования, которые постоянно обновляют кольца. Эти кольца намного более массивные чем кольца других газовых гигантов. Считается, что именно эта большая масса сохранила кольца в течение 4,5 миллиардов лет, начиная с момента когда сформировался Сатурн, и, вероятно, сохранит их в течение последующих миллиардов лет.

Солнце и планеты

В далёком будущем самые большие изменения в Солнечной системе будут связаны с из

aboutspacejornal.net

4.1. Формирование и эволюция Солнечной системы

Ни одна из большого числа различных моделей происхождения и развития Солнечной системы не удостоилась перевода в ранг общепризнанной теории.

Согласно гипотезе Канта – Лапласа система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи, находящейся во вращательном движении вокруг Солнца.

Впервые английский физик и астрофизик Дж.Х. Джинс (1877-1946) предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, превратилась в планеты. Учитывая огромное расстояние между звездами, такое столкновение кажется невероятным.

Из современных гипотез происхождения Солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика Х. Альфвена (1908-1995) и английского Ф. Хойла (1915-2001). Согласно этой теории первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того, как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде – Солнцу, но его магнитное поле остановило движущийся газ на различных расстояниях – как раз там, где находятся планеты. Гравитационные и магнитные силы повлияли на концентрацию и сгущение этого газа. В результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.

Известна также гипотеза образования Солнечной системы из холодного газопылевого облака, окружающего Солнце, предложенная советским ученым О.Ю. Шмидтом (1891-1956).

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвездного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителем для нескольких звезд.

В процессе гравитационного сжатия размеры газопылевого облака уменьшились, и в силу закона сохранения углового момента, росла скорость вращения облака. Центр, где собралась большая часть массы, становился все более и более горячим, чем окружающий диск. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного протопланетного диска с диаметром примерно 200 а.е. и горячей, плотной протозвезды в центре. Полагают, что в этой точке эволюции Солнце было звездой типа Т Тельца. Изучение таких звезд показывает, что они часто сопровождаются протопланетными дисками с массами 0,001-0,1 солнечной массы, с подавляющим процентом массы туманности, сосредоточенным непосредственно в звезде. Планеты сформировались аккрецией из этого диска (рис. 26).

Рис. 26. Эволюция Солнца

В течение 50 млн лет давление и плотность водорода в центре протозвезды стали достаточно большими для начала термоядерных реакций. Температура, скорость реакции, давление и плотность увеличились, пока не было достигнуто гидростатическое равновесие, с тепловой энергией, противостоящей силе гравитационного сжатия. На этом этапе Солнце стало полноценной звездой главной последовательности.

Солнечная система просуществует, пока Солнце не начнет развиваться вне главной последовательности диаграммы Герцшпрунга-Рассела, которая показывает зависимость между яркостью звезд и температурой их поверхности. Более горячие звезды являются более яркими.

Солнце сжигает запасы водородного топлива, при этом выделяющаяся энергия имеет тенденцию к исчерпанию, заставляя Солнце сжиматься. Это увеличивает давление в его недрах и нагревает ядро, таким образом ускоряя сжигание топлива. В результате Солнце становится ярче на примерно 10% каждые 1,1 млрд лет.

Через приблизительно 5-6 млрд лет водород в ядре Солнца будет полностью преобразован в гелий, что завершит фазу главной последовательности. В это время внешние слои Солнца расширятся примерно в 260 раз – Солнце станет красным гигантом. Из-за чрезвычайно увеличивающейся площади поверхности она будет гораздо более прохладной, чем при нахождении на главной последовательности (2600 К).

В конечном счете, внешние слои Солнца будут выброшены мощным взрывом в окружающее пространство, образовав планетарную туманность, в центре которой останется лишь небольшое звездное ядро – белый карлик, необычно плотный объект в половину первоначальной массы Солнца, но размером с Землю. Эта туманность возвратит часть материала, который сформировал Солнце, в межзвездную среду.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

Отсутствие общепризнанной версии происхождения планетной системы имеет свое объяснение. Прежде всего, единственность объекта наблюдения исключает применение сравнительного анализа и заставляет решать нелегкую задачу восстановления истории на основании одних только знаний о сегодняшнем состоянии Солнечной системы. Например, представления об эволюции звезд от их рождения до гибели получены благодаря накоплению и статистической обработке наблюдаемых данных о современном состоянии множества звезд разных классов, находящихся на разных стадиях развития. Неудивительно, что о развитии далеких от нас звезд астрономия знает существенно больше, чем о происхождении и развитии места нашего обитания – Солнечной системы.

Таким образом, солнечная система – очень сложное природное образование, сочетающее разнообразие составляющих ее элементов с высочайшей устойчивостью системы как целого. При огромном числе и разнообразии составляющих систему элементов, при тех сложных взаимоотношениях, которые устанавливаются между ними, задача определения механизма ее образования, оказывается очень непростой.

В Солнечную систему входят:

  • Солнце;

  • 4 планеты земной группы: Меркурий, Венера, Земля, Марс и их спутники;

  • пояс малых планет-астероидов, куда входит планета-карлик Церера;

  • бесчисленное число метеоритных тел, движущихся как роями, так и одиночно.

  • 4 планеты-гиганты: Юпитер, Сатурн, Уран, Нептун и их спутники;

  • сотни комет;

  • кентавры;

  • транснептуновые объекты: пояс Койпера, куда входят 4 планеты-карлика: Плутон, Хаумеа, Макемаке, Эрида и рассеянный диск;

  • отдаленные области, куда входят облако Оорта и Седна;

  • пограничные области.

studfiles.net

Происхождение и эволюция солнечной системы

Мы живём в удивительном и разнообразном мире. Он настолько уникален, что порой кажется, как такое возможно. Давайте кратко и понятно разберём происхождение Солнечной системы.

Наша планета Земля вращается вокруг звезды, а, кроме неё еще несколько планет, кометы, спутники. Всё это называется Солнечная система, существует несколько вариантов теории происхождения солнечной системы. Но все они примерно сводятся только к одному, солнечная система образовалась в результате гравитационных сил.

Гравитация — это, конечно, хорошо, но нужен строительный материал. То есть, из чего гравитация «слепила» Солнечную систему – это планеты, спутники, кометы.

Рождение Солнца



Для начала разберёмся каков возраст солнечной системы. По последним научным данным образование солнечной системы началось 4,6 миллиарда лет назад из молекулярного облака. Солнечная система находится в галактики Млечный путь, а образовалась галактика 13,6 миллиарда лет.

Возникает резонный вопрос, а что же было на месте где сейчас находиться Солнечная система.

По последним научным данным, наше Солнце – это звезда второго поколения. Как это, спросите вы? Всё довольно просто.

Звёзды первого поколения принято считать звёзды, которые образовались после Большого взрыва. Они состояли из водорода и гелия.

А наша звезда Солнце – это остатки от звезды первого поколения. То есть, она не «чистая» звезда — в нашем Солнце, кроме водорода и гелия, уже присутствую тяжёлые элементы.
Тяжёлые элементы синтезировались в звезде первого поколения в результате термоядерных реакций.

Звезда первого поколения была очень большая и быстро сжигала своё топливо, водород. В результате она сожгла весь водород и стала сжигать гелий, звезда стала расширяться и превратилась в красного гиганта.

Звезда не могла бесконечно расширяться, произошёл взрыв, и звезда первого поколения сбросила свою оболочку, а сама звезда превратилась сверхновую.

После взрыва, вокруг новой звезды, образовалась молекулярное облако – строительный материал для образования солнечной системы.

Далее, пошли в ход гравитационные силы, из которых стали образовывается планеты, спутники. Вот мы вам примерно и описали как возникла солнечная система.

Конечно, ведутся новые исследования, наука не стоит на месте и теории происхождения солнечной системы будут дополняться или манятся, но нам важно понять основные понятия происхождение солнечной системы.

Протосолнце и протопланеты, нарисовано художником.

Эволюция солнечной системы

Долгое время учёные считали, что солнечная система за все время своего существования практически никак не изменялась. Но последние исследования показали, что эволюция солнечной системы происходила практически постоянно.

Так, стало известно, что солнечная система была компактной, пояс Койпера был расположен значительно ближе к Солнцу. Но, что самое интересное, что в солнечной системе были и другие планеты, по размеру приблизительно как Юпитер. Но давай по отдельности разберёмся и поймём, как происходила эволюция солнечной системы.

Планеты земной группы


Под конец формирования, в солнечной системе было от 50 до 100 протопланет. Напомним вам, что протопланета – это не со совсем сформировавшийся планета, это зародыш планеты, который прошёл процесс внутреннего плавления.
Так вот таких протопланет в солнечной системе было около сотни, они в течение сотни миллионов лет, сталкивались, сливались. В результате получились известные четыре планеты земной группы. Кроме этого, есть версия, что Луна, образовалась от столкновения, когда ещё Земля была протопланетой и, по всей видимости, она столкнулась с аналогичным объектом.

Пояс астероидов

Как известно, между Марсом и Юпитером находится пояс астероидов. Долгое время считалась, там раньше находилась планета, которая была разрушена. В результате чего и образовался это пояс.

последние исследования не подтвердили эту гипотезу. Первоначально, эта область имела немало материи для строительства 2 или 3 планет, подобию Земли.

Похоже, на первоначальной стадии всё так и происходило, но относительно близко сформировался газовый гигант Юпитер. Под действием орбитальных сил, многие протопланеты, были выкинуты из пояса. Некоторые, попали во внутреннюю солнечную систему, что помогло формированию планет земной группы, а возможно и Луны планеты Земля. Другие были выкинуты во внешние границы солнечной системы.

Планетная миграция

Согласно гипотезе происхождения солнечной системы, две планеты Уран и Нептун находятся не на своём месте. Где их наблюдают сейчас, они не смогли бы сформироваться. Согласно теории возникновение солнечной системы, Уран и Нептун первоначально, находились рядом с Сатурном и Юпитером.

Под действием протопланет, которые ещё не сформировались в полноценные планеты, так вот под их действием, Сатурн и Юпитер вошли между собой в орбитальный резонанс. Произошло это примерно 4 миллиарда лет назад, напомним, что возраст солнечной системы примерно 4,6 миллиарда лет.

Произошло следующее, Сатурн делал один оборот вокруг Солнца, а Юпитер за то же время делал два оборота. Всё это привело к гравитационному давлению на внешние планеты.

Последствия были таковы, что две планеты Уран и Нептун были выкинуты на дальние границы солнечной системы. По той же причине объясняется происхождение пояс Койпера и Облако Оорта.

Бомбардировка планет

Активная бомбардировка планет происходила, когда происходила миграция планет. Так как многие протопланеты были выдавлена во внешние и внутренние границы солнечной системы, то планеты были подвержены активному метеоритному бомбометанию. До сих пор мы видим последствия на Луне, Меркурии, в виде гигантских кратеров.

Всё это происходило, 4 млрд лет назад. Сейчас такие столкновения очень редкие.

Последнее столкновение произошло в 2009 году, когда на Юпитер упал неизвестный объект. В результате на планете образовалось большое тёмное пятно, размером с Тихим океаном.

Всё это говорит, только об одном, что эволюция солнечной системы продолжается.

Как сформировались спутники планет

Образование спутников происходило по трём основным правилам, это:

  • Образование произошло из околопланетного диска.
  • Образование после столкновения, по касательной территории.
  • Образование или вернее захват объекта.

Наш мир продолжает меняться, и эволюция солнечной системы продолжается. Мы привыкли, что солнечная система не изменится и так как она выглядит сейчас будет существовать вечно, но это не так. Давайте заглянет в будущее.

Будущее солнечной системы

Можно задать такой вопрос, на каком сейчас этапе формирования тел солнечной системы? Солнечная полностью сформирована система и устойчива.

По последним научным данным, солнечная система является стабильной системой. То есть больших изменений в ближайшее время не стоит ждать. Самые большие изменения будут происходить с изменением состояния Солнца.

Солнце

Солнце источник жизни на Земле, но в будущем это и гибель для всего живого на Земле.

Солнце — это огромный источник энергии, энергия требует топливо, для звезды это водород. По мере израсходования водорода, Солнце будет все горячее. Примерно через каждые 1 млрд лет, Солнце будет становиться жарче на 10%.

Чем это грозит земле? Большие изменения уже наступят уже через миллиард лет. Жить на Земле будет практически невозможной, начнутся испаряться океаны. Что приведёт к парниковому эффекту.

Этот процесс будет идти долго и примерно через 3,5 млрд лет жизнь на Земле прекратится. У человечества есть два варианта. Первое закопаться глубоко в Землю или покинуть её.

Уйти глубоко под землю конечно вариант, но жить как кроты мало кому захочется.

Покинуть Землю, вариант получше. Тем более что Марс к тому времени будет отличным прибежищем для человечества. Марс станет благоприятной планетой для проживания.

Но Солнце не остановится и по мере сжигания водорода будет увеличивается в размерах и превратится в красный гигант и произойдёт это пресно через 7,5 млрд лет.

Солнце увеличится в размере в 256 раз от сегодняшнего размера. Меркурий, как первая планета от Солнца будет поглощена, Венера – вторая планета также будет уничтожена Солнцем.

Что же будет с Землёй? К тому времени жить на Земле уже будет невозможно, даже глубоко под землёй. Но вот поглотит ли её Солнце – это вопрос пока остаётся открытым.

Расширения Солнца продолжится, оно расширится ещё в тысячу раз, но потом произойдёт сброс оболочки, которая послужит для образования новых планет или звёзд.

После сбрасывания оболочки Солнце превратится в белого карлика. Вместе с оболочкой звезда потеряет и массу, что ведёт к нарушению гравитационных сил.

Многие планеты могут столкутся между собой или разлетятся в разные стороны. В любом случае орбиты оставшихся планет изменятся кардинально.

Изменения Солнца на белом карлике не остановятся, в дальнейшем наша звезда превратится в чёрного карлика.

После этого солнечная планета станет темной и холодной, жизнь на оставшихся планетах будет невозможна. Это будет конец.

Весь процесс от рождения звезды до смерти займёт 12,5 млрд лет. Как нам известно возраст солнечной системы 4,6 млрд лет, то есть сейчас мы находимся примерно на середине жизненного пути нашей солнечной системы.

Что ждёт человечество

Мы с вами прошли долгий путь от возникновения солнечной системы до заката и рассмотрели различные теории происхождения солнечной системы, но вывод можно сделать один. Жизнь на планете Земля не может существовать вечно, рано или поздно, но человечеству придётся принять решение и покинуть планету.


Некоторое время Марс сможет стать для человека убежищем, но в дальнейшем и он станет непригодным для жизни.

Есть вариант спрятаться глубоко под землю, где возможна жизнь за счёт внутреннего тепла планеты.

Кто знает, как уйдут человеческие технологии в будущем, возможно мы сможем прекратить планету в огромный космический корабль. В котором человек отправится в другие миры, к другим звёздам, где будет воссоздан новый дом и новая солнечная система и история начнётся заново и где будут заново изучать новое происхождение солнечной системы. Но мы этого никогда не узнаем.

Похожие новости:

Не забывайте делиться. Спасибо.

cosmosplanet.ru

Образование Солнечной Системы

Проблема происхождения и эволюции Земли и планет оказалась «труднее», чем проблема происхождения и эволюции звезд. Во-первых, Солнечная система у нас «в одном экземпляре», она – единственная достоверно известная планетная система. Поэтому у нас нет возможностей с чем-то сравнивать, обобщать, применять могучие методы статистического анализа, как это делается в случае звезд. Во-вторых, как это ни странно звучит, мы слишком много знаем о Солнечной системе. Нам известно очень много деталей и подробностей, часто противоречивых, закономерностей, которые требуют объяснения в рамках данной теории или концепции.

Назовем основные закономерности, присущие Солнечной системе в целом.

1. Орбиты планет лежат почти в одной плоскости, и эта плоскость практически совпадает с плоскостью экватора Солнца.

2. Планеты обращаются вокруг Солнца в том же направлении, в каком Солнце вращается вокруг своей оси. Спиновое вращение планет (вокруг собственной оси) и обращение вокруг них естественных спутников происходит в этом же направлении. Распространенное явление в солнечной системе – резонансы между спиновыми и орбитальными вращениями планет и их спутников.

3. Расстояния от Солнца до планет подчиняются закону «планетных расстояний».

4. Солнечная система, несмотря на взаимные гравитационные влияния планет (возмущения), обладает устойчивостью.

5. Практически все вещество солнечной системы (99.9% всей массы) сосредоточено в Солнце. Лишь 1/1000 всей массы солнечной системы заключена в планетах, астероидах и т.д. (Заметим, что более половины этой доли сосредоточено в Юпитере.)

6. Планеты четко делятся на две группы: железо-каменные (состоящее в основном из тяжелых элементов Fe, Ni, Si, O) и водородо-гелиевые (с характерным «звездным» химическим составом). Первые (к ним относятся Меркурий, Венера, Земля и Марс) расположены сравнительно близко к Солнцу (все в пределах 1.5 а.е. от Солнца), вторые (Юпитер, Сатурн, Уран и Нептун ) – далеко от Солнца (от 5 до 30 а.е.). Первые («планеты земной группы») имеют сравнительно небольшие размеры (радиусы от 0.4 R+ до 1 R+) и высокую среднюю плотность (от 4 до 5.5 кг/м3), вторые («планеты-гиганты») – действительно гиганты (радиусы от 3.4 R+ до 11 R+) с низкой средней плотностью (от 0.7 до 1.7 кг/м3).

Первую материалистическую модель мира (солнечной системы), в которой сам мир и небесные тела рассматривались в развитии попытался построить Рене Декарт (1596–1650). По Декарту, все небесные тела образовались в результате вихревых движений, происходивших в однородной вначале мировой материи – эфире. Солнечная система, согласно Декарту, представляет собой один из таких вихрей мировой материи. Центральное светило – Солнце – состоит из более тонкой мировой материи, а планеты и кометы – из более крупных частиц, отброшенных в процессе вращения к периферии. Планеты движутся вокруг Солнца, увлекаемые мировым вихрем. Каждая планета вращается, как соломинка в водовороте, в своем собственном вихре. Данные представления получили название вихревой гипотезы.

Истоком современной планетной космогонии можно считать гипотезу происхождения планетной системы, сформулированную Иммануилом Кантом в 1755 г. в книге «Всеобщая естественная история и теория неба». В соответствии с ней «в начале» мировое пространство было заполнено материей, находящейся в состоянии первозданного хаоса. Затем, под действием двух сил – притяжения и отталкивания – материя переходила к более организованным формам. Солнце и планеты, по Канту, образовались при слипании пылинок первичного вещества.

Лаплас в своем труде «Изложение системы Мира» (1796) развил теорию Канта, указав конкретный механизм образования планет. При сжатии протосолнца его вращение должно было ускоряться, что, по мнению Лапласа, должно было приводить к неустойчивости солнечного вещества в области экватора. Вследствие этого от экватора время от времени отделялись газо-пылевые кольца. И так несколько раз, по числу известных планет. Кольца постепенно удалялись от Солнца и занимали «свое» место в пространстве. Каждое кольцо разорвалось и охладилось, а уже из кусочков холодного кольца путем слипания образовалась планета.

Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом – Солнцем и планетами.

Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как «запас вращения» системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет.

Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.

С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы), так как масса последнего была значительно меньше основной туманности («протосолнца»), то полный момент количества движения кольца должен быть много меньше, чем у «протосолнца». В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от «протосолнца» к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения «протосолнца», а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

Для гипотезы Лапласа эта трудность оказалась непреодолимой.

Другой, весьма распространенный, взгляд на происхождение планет именуют приливной гипотезой. В основе этой гипотезы – идея о том, что планеты образовались из солнечного вещества, выброшенного из Солнца в результате катастрофического события. В одном варианте приливной гипотезы таким событием являлась встреча Солнца с кометой (Бюффон, 1745), в другом – со звездой (Джинс, 1916). Гипотеза Джеймса Джинса была особенно популярна в 20–30-е гг. XX в. В большинстве учебников и популярных книг по астрономии приводился рисунок, иллюстрирующий рождение планет «по Джинсу». На нем показано, как сигароподобный сгусток материи, вырванный из Солнца в результате близкого прохождения звезды, может после распада на части дать «жизнь» планетам. Несостоятельность этой гипотезы доказал российский астроном Н.Н.Парийский.

В настоящее время считают, что планеты образуются из некоторой части вещества, оставшегося после конденсации протозвезды из газо-пылевого облака. Если это действительно так, то планеты должны быть обычным явлением в Галактике. Эти выводы подтверждаются наблюдениями протопланетных дисков около формирующихся звезд, а также рядом косвенных свидетельств существования планет около звезд.

Решаюший вклад в становление современной космогонической картины сделал Отто Юльевич Шмидт (1891–1956), который в 1940 г. сформулировал основные положения этой картины. Гипотеза Шмидта на новом современном уровне развивала классическую космогонию Канта и Лапласа. В основе новой космогонической концепции лежала идея образования планет не в результате сжатия раскаленных газовых сгустков, а путем объединения (аккумуляции) холодных твердых частиц и тел Эти тела (планетезимали), в относительно короткое время сформировались из пыли и газа дискообразной туманности, окружавшей молодое Солнце.

О.Ю.Шмидт показал, что вследствие законов сохранения энергии и момента количества движения туманность (протопланетное облако) должна была разделиться на несколько кольцеобразных «зон питания». В них-то и аккумулировались будущие планеты. Из такого представления с неизбежностью следовало, что Земля никогда не была огненно-жидкой. Вначале относительно холодная (во всяком случае не расплавленная) она разогрелась лишь потом: изнутри – при распаде радиоактивных элементов, а снаружи – в результате интенсивной бомбардировки поверхности метеоритами и падений на нее крупных (размером с Луну или даже с Марс) тел.

Хронология событий может быть восстановлена: на стадии формирования Солнца – из теории звездной эволюции, на стадии роста Земли – по модельным расчетам, на более поздних стадиях – по данным геологии и геохронологии.

Возраст Солнца оценивается в 4,7 млрд лет. Столько лет тому назад в недрах Солнца начались термоядерные реакции, продолжающиеся по сей день. На образование Солнца пошло около 90% вещества протопланетного облака. Еще раньше газо-пылевое облако, сжимаясь, ускоряло свое вращение. Это вращение не позволяло облаку сжиматься в направлениях, перпендикулярных оси вращения. В результате сжимаюшееся и вращающееся облако приобрело форму диска, который затем распался на кольцевые зоны.

В кольцевых зонах протопланетного облака происходило слипание пыли в планетезимали. Это сравнительно быстрый процесс. Расчеты показывают, что он должен был продолжаться всего лишь около 10 тыс. лет в окрестностях Земли и около 1 млн лет в окрестностях Юпитера.

В солнечной системе сохранился реликтовый рой планетезималей. Это пояс астероидов, расположенный между орбитами Марса и Юпитера.

В настоящее время известно более 5 тыс. малых планет в этом поясе. Суммарная масса всех тел в поясе астероидов не превышает 1/1000 массы Земли. Из-за малости массы вещества здесь так никогда и не сформировалась планета.

Много больше времени должен был занять процесс укрупнения и слияния планетезималей. Рост Земли от 10 км до размера планеты, по модельным расчетам, продолжался около 100 млн лет. Наша планета, по-видимому, в основном сформировалась в период около 4,56 млрд лет тому назад (именно таков возраст самых старых из метеоритов, найденных на Земле). Но и после этого еще в течение 120–150 млн лет она продолжала расти за счет падения планетезималей и метеоритной бомбардировки. При падении крупных планетезималей выделялась колоссальная тепловая энергия, расплавлявшая поверхность Земли. Весь этот период поверхность Земли представляла собой океан раскаленной расплавленной магмы глубиной 200–400 км. Разумеется, никакие виды жизни невозможны были в этот период. Как показали исследования возрастов и числа метеоритных кратеров на Луне, проведенные во время пилотируемых полетов программы Аполлон (США) и исследований с помощью автоматических управляемых роботов-луноходов (СССР), падения планетезималей были особенно частыми в описанный период, а затем их число резко уменьшилось, очевидно, вследствие истощения их запаса на орбите.

Сформулируем кратко основные положения современной концепции происхождения Солнца и планет, в рамках которой удается объяснить и описать количественно большинство из наблюдаемых фактов и названных выше закономерностей.

1. По современным представлениям планеты и Солнце произошли из одного холодного газо-пылевого облака. Сначала 90% вещества собралось в центре облака и возникло Солнце. Из остатков облака путем холодного слипания образовались планеты.

2. Холодное слипание происходило медленно и прошло через стадию планетезималей. Планетезимали – тела, по размерам близкие к метеоритам и астероидам, – сформировали твердые части планет. В случае планет земной группы твердая часть – это вся планета целиком. В случае планет-гигантов – это их ядро.

3. Различие между планетами земной группы и планетами гигантами определяется действием солнечного излучения. Работают два фактора. Первый. Ближе к Солнцу туманность теплее и легкие газы улетучиваются. Силы притяжения твердой части планеты недостаточно, чтобы их удержать. Второе. Ближе к Солнцу эффективно действует световое давление, которое сносит легкие газы на периферию туманности. Под влиянием названных факторов планеты земной группы оказываются практически лишенными летучих веществ, а планеты-гиганты содержат их очень много (в основном это водород и гелий – главные составляющие первичной туманности). Если бы не действовали эти факторы, Земля имела бы массу и строение Сатурна: в центре железо-каменное ядро размером с нашу планету, а снаружи гигантская водородо-гелиевая оболочка.

Современная теория происхождения Солнца и планет подтверждается многочисленными модельными расчетами, данными геофизики, геологии и астрономии. Решающие доказательства справедливости этой теории дали полеты пилотируемых космических кораблей к Луне, полеты автоматических станций к планетам Солнечной системы.

www.examen.ru

Как образовалась Солнечная система

Солнечная система > Как образовалась Солнечная система

Узнайте, как появилась Солнечная система: история формирования звездного диска, как появились первые планеты, описание Солнца и самые популярные модели.

Тысячелетиями люди пытались понять, как появился мир. Но большую часть времени все теории строились на обычных догадках и спорах. Только в 16-18 веках начали искать научное обоснование всему.

Если речь идет о том, как образовалась Солнечная система, то на первом месте стоит небулярная гипотеза. Она утверждает, что Солнце и прочие объекты в системе появились из туманного материала миллиарды лет назад.

Небулярная гипотеза образования Солнечной системы

По сути, Солнечная система появилась с огромнейшего скопления молекулярного газа и пыли. Но 4.57 миллиардов лет назад случилось непредвиденное событие, заставившее его рухнуть. Это могла быть ударная волна от сверхновой или же гравитационный коллапс в самом облаке.

После этого некоторые участки начали сгущаться, образуя более плотные регионы. Они втягивали еще больше материи и начинали вращаться, а из-за роста давления еще и нагревались. Большая часть материала накапливалась в центре, а остатки расплющивались на диске. Центральный шар стал Солнцем, а все остальное – протопланетный диск.

Пыль и газ на диске продолжали сливаться, пока не образовывали крупные тела – планеты. Расположенные ближе к Солнцу собирали металлы и силикаты (Меркурий, Венера, Земля и Марс). Но металлические элементы были представлены в небольшом количестве, поэтому перечисленные планеты выросли до малых размеров.

Между Марсом и Юпитером появились планеты-гиганты, потому что расположенный на такой удаленности материал был достаточно холодным, чтобы летучие ледяные соединения оставались твердыми. Ледышки доминировали, поэтому они смогли набрать массивности и захватить больше водорода и гелия. Оставшийся мусор перебрался в пояс Койпера и облако Оорта.

Художественная интерпретация ранней Солнечной системы, где столкновение между частичками в аккреционном диске привело к формированию планет

За 50 миллионов лет уровень плотности и давление водорода так выросли, что позволили активировать термоядерный синтез. Температурные показатели, давление, и скорость росли, чтобы обеспечить гидростатическое давление. Солнечный ветер сформировал гелиосферу и сдул пылевые и газовые остатки с протопланетного диска, завершив процесс.

Аккреция

Астрофизик Сергей Попов о сверхмассивных черных дырах, образовании планет и аккреции вещества в ранней Вселенной:

История изучения образования Солнечной системы

В 1734 году эту гипотезу выдвинул Эммануил Сведенборг. Ее развил Иммануил Кант, утверждавший, что газовые облака медленно вращаются, разрушаются и становятся плотными из-за гравитации и появления планет и звезд.

В меньшем масштабе эту идею обсуждал Пьер-Симон Лаплас в 1796 году. Он полагал, что наша звезда Солнце с самого начала обладала расширенной горячей атмосферой, которая увеличивалась и сокращалась. По мере вращения облако сбрасывало материал, который затем уплотнялся и создавал планеты.

Sh 2-106 – район образования звезд в созвездии Лебедь

В 19 веке модель Лапласа обрела популярность, но с ней возникали трудности. Главная проблема состояла в распределении углового момента между звездой и планетами. Тем более, Джеймс Максвелл утверждал, что между внешними и внутренними кольцами существует разная скорость вращения, что не позволит материалу конденсироваться. Также против выступил Дэвид Брюстер, утверждавший, что в таком случае, Луна должна была перебрать часть земной воды и обладать атмосферой.

В 20-м веке эта модель потеряла сторонников и ученые стали искать новые объяснения. Но в 1970-м году она возрождается в обновленном виде – модель солнечного небулярного диска (SNDM), созданная Виктором Сафроновым (1972 год). Он сформулировал практически все главные проблемы в процессе формирования планет и большинству нашел объяснения.

Например, она прекрасно разъясняла наличие аккреционных дисков вокруг молодых звезд. Разные модели также демонстрировали, что аккреция материала приводит к появлению тел земного размера. Если сначала идея применялась только для нашей системы, то позже ее масштабировали до размеров Вселенной.

Проблемы при изучении образования Солнечной системы

Теория туманности считается наиболее популярной для объяснения того, как появилось Солнце и Солнечная система, но она все еще страдает от проблем, которым не могут найти решение. Возьмем, к примеру, не состыковку с наклонными осями. Небулярная теория говорит о том, что звезды должны быть наклонены одинаково относительно эклиптики. Но ведь мы знаем, что у внешних и внутренних планет они отличаются.

Наклон оси внутренних планет системы практически достигает 0°, а вот Земля и Марс наклонены на 23.4° и 25°. Уран вообще смещен на 97.77° и его полюса смотрят на Солнце.

Список потенциально пригодных для жизни экзопланет

Свою долю скептицизма добавило и изучение экзопланет. Например, раздор вносит наличие «горячих юпитеров», совершающих обороты вокруг звезд за несколько дней. Ученым пришлось корректировать гипотезу, но недочеты еще остаются.

Узнать все подробности о нашем происхождении и прошлой истории Солнечной системы все еще сложно. Как только кажется, что нашли ответ, появляется новая проблема. Но в исследовании Вселенной мы проделали долгий путь. И дальнейшее изучение поможет заполнить пробелы.


Образование Солнечной системы

Строение Солнечной системы

Факты о Солнечной системе

v-kosmose.com

Формирование и эволюция Солнечной системы

Согласно современным представлениям, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака.

Бо́льшая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды – Солнца.

Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы.

Эволюция Солнечной системы

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива.

По мере сжигания Солнцем запасов водородного топлива оно будет становиться всё горячее, и, как следствие, будет расходовать запасы водорода всё быстрее. В результате этого светимость Солнца возрастает на 10% каждые 1,1 миллиардов лет.

Спустя 1 миллиард лет из-за увеличения солнечного излучения околозвёздная обитаемая зона Солнечной системы будет смещена за пределы современной земной орбиты.

Поверхность Земли постепенно разогреется так сильно, что на ней станет невозможным присутствие воды в жидком состоянии. Испарение океанов создаст парниковый эффект, который приведет к ещё более интенсивному разогреву Земли.

На этом этапе существование жизни на земной поверхности станет невозможным.

Однако представляется вероятным, что в этот же период начнет постепенно повышаться температура поверхности Марса.

Вода и углекислый газ, замороженные в недрах планеты, начнут высвобождаться в атмосферу, и это приведёт в созданию парникового эффекта, ещё более увеличивающему скорость разогрева поверхности.

В результате атмосфера Марса достигнет условий схожих с земными, и таким образом Марс вполне может стать потенциальным убежищем для жизни в будущем.

Надо заметить, что миллиард лет по нашим человеческим представлениям – это очень большой срок. За это время и даже намного раньше люди сами могут погубить жизнь на Земле, если не будут беречь и сохранять то, что им предоставила для существования Природа.

По прошествии примерно 3,5 миллиардов лет от настоящего времени условия на поверхности Земли будут похожи на современные условия планеты Венеры: океаны в значительной степени испарятся, вся жизнь постепенно вымрет.

Приблизительно через 7,7 миллиардов лет от настоящего времени ядро Солнца станет настолько горячим, что запустит процесс горения водорода в окружающей его оболочке, что повлечёт за собой сильное расширение внешних слоёв звезды.

Таким образом Солнце войдёт в новую фазу своей эволюции, превратившись в красный гигант.

В этой фазе радиус Солнца составит 1,2 а. е., что в 256 раз больше его современного радиуса.

Многократное увеличение площади поверхности звезды приведёт к снижению температуры поверхности (около 2600 К) и к увеличению светимости (в 2700 раз больше современного значения).

Поверхностные массы газов будут довольно быстро рассеиваться из-за влияния солнечного ветра, в результате чего будет унесено в окружающее пространство около 33% массы светила.

К тому времени поверхность Земли будет расплавленной, поскольку температура на ней достигнет 1370°С.

Атмосфера Земли, вероятно, будет унесена в космическое пространство сильнейшим солнечным ветром, испускаемым красным гигантом.

С поверхности Земли Солнце будет выглядеть как огромный красный круг с угловыми размерами ≈160°, занимая тем самым бо́льшую часть неба.

Постепенное сгорание водорода в около центральных областях будет приводить к увеличению массы солнечного ядра до тех пор пока она не достигнет значения 45% от массы звезды.

Плотность и температура ядра станут такими высокими, что произойдёт гелиевая вспышка и начнётся процесс термоядерного синтеза гелия в углерод.

Во время этой фазы Солнце уменьшится в размере от предыдущих 250 до 11 радиусов. Его светимость упадёт с 3000- до 54-кратного уровня современного Солнца, а температура поверхности увеличится до 4770 К.

Фаза синтеза гелия в углерод будет иметь стабильный характер, но продлится всего около 100 миллионов лет.

Постепенно, как и в фазе горения водорода, в реакцию будут захватываться запасы гелия из областей, окружающих ядро, что приведёт к повторному расширению звезды, и она снова станет красным гигантом.

Эта фаза существования Солнца продлится около 30 миллионов лет.

В дальнейшем начнёт усиливаться солнечный ветер (рассеяние частиц звёздной оболочки) и оставшиеся внешние слои Солнца будут сброшены в открытый космос в виде мощных струй звёздного вещества.

Отбрасываемая материя образует гало, именуемое планетарной туманностью, которое будет состоять из продуктов горения последних фаз – гелия и углерода.

Эта материя будет участвовать в обогащении межзвёздного пространства тяжёлыми элементами, необходимыми для образования космических тел следующих поколений.

Примерно ещё через 75 тыс лет от красного гиганта останется лишь его маленькое центральное ядро – белый карлик, небольшой, но очень плотный космический объект.

От красного гиганта останется лишь его маленькое центральное ядро – белый карлик, небольшой, но очень плотный космический объект.

Остаток массы составит примерно 50% от той, что Солнце имеет сегодня, а его плотность достигнет двух миллионов тонн на каждый кубический сантиметр.

Размеры этой звезды будут сравнимы с размерами Земли.

Изначально этот белый карлик может иметь светимость в 100 раз превышающую современную светимость Солнца. Он будет полностью состоять из вырожденного углерода и кислорода, но никогда не сможет достичь температур, достаточных для начала синтеза этих элементов.

Таким образом, белый карлик Солнце будет постепенно остывать, становясь всё тусклее и холоднее.

По мере умирания Солнца его гравитационное влияние на обращающиеся вокруг тела (планеты, кометы, астероиды) будет ослабевать из-за потери звездой массы.

В этот период будет достигнута заключительная конфигурация объектов Солнечной системы.

Орбиты всех сохранившихся планет переместятся на более дальние расстояния: Меркурий прекратит своё существование, если Венера, Земля и Марс будут всё ещё существовать, их орбиты будут лежать приблизительно в 210, 280 и 420 млн км.

Эти и все оставшиеся планеты будут представлять собой холодные, темные миры, лишённые каких-либо форм жизни.

Они продолжат обращаться по орбитам вокруг их мёртвой звезды, а их скорость значительно снизится по причине увеличения расстояния от Солнца и уменьшения гравитационного притяжения.

В конечном итоге, после нескольких миллиардов лет белый карлик Солнце полностью прекратит излучать в окружающее пространство видимый свет, радиоволны и инфракрасное излучение, превратившись в чёрный карлик.

Вся история Солнца от его рождения до смерти займёт примерно 12,4 млрд лет.

По материалам Википедии

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1. Солнечная система

2. Наш дом Земля

Видео: Жизненный путь Солнца. Что ждет нашу планету Земля?

myvera.ru

Формирование и эволюция Солнечной системы Википедия

Согласно современным представлениям, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды — Солнца. Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы.

Протосолнце и протопланеты в представлении художника

Формирование[ | ]

Гипотеза об образовании Солнечной системы из газопылевого облака — небулярная гипотеза — первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (экзопланет), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Газопылевое облако, в котором сформировались Солнце и ближайшие к нему звёзды, возникло в результате взрыва сверхновой звезды Коатликуэ, с массой примерно в 30 раз больше массы Солнца[1].

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва сверхновой, и др.), которое стало центром гравитационного притяжения для окружающего вещества — центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, цент

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *