Эми излучатель своими руками – Как создать электромагнитный импульс 🚩 направленный электромагнитный импульс 🚩 Естественные науки

Как сделать простой ЭМИ излучатель своими руками!


ОСТОРОЖНО ВЫСОКОЕ НАПРЯЖЕНИЕ!
Доброго времени суток любители интересных самоделок! Около года назад я впервые узнал как можно сделать ЭМИ излучатель для влияния на различную электронику с малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов. В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой «перезарядки». Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему «пробойник». Данная конструкция меня устраивала. Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

Хотелось бы сказать что всё это было сделано в качестве эксперимента!


И так для ЭМИ излучателя нам понадобится:
-высоковольтный модуль
-две батарейки на 1,5 вольта
-бокс для батареек
-корпус, я использую пластиковую бутылку на 0,5
-медная проволока диаметром 0,5-1,5 мм
-кнопка без фиксатора
-провода

Из инструментов нам понадобится:
-паяльник
-термо клей

И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки



Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса


Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:


Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:

С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:

Самый длинный провод вставляем через отверстие внутрь бутылки:

Припаиваем к нему оставшийся провод высоковольтника:

Располагаем высоковольтный модуль внутри бутылки:

Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:

Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:


Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём


укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:


Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:


Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:

Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа!

До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!

Вот видео с испытаниями и ЭМИ перчаткой:





Всем спасибо за внимание! Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Уничтожитель электроники | Мастер-класс своими руками

Представьте, что у вас есть некое устройство, которое способно вывести из строя любую электронику на расстоянии. Согласитесь, похоже на сценарий какого-то фантастического фильма. Но это не фантастика, а вполне реальность. Такое устройство сможет сделать почти любой желающий своими руками, из деталей, которые свободно можно достать.

Описание устройства


Уничтожитель электроники – электромагнитная пушка, посылающая мощные направленные электромагнитные импульсы высокой амплитуды, способные вывести из строя микропроцессорную технику.

Принцип работы уничтожителя


Принцип работы отдаленно напоминает работу трансформатора Тесла и электрошокера. От элемента питания питается электронный высоковольтный повышающий преобразователь. Нагрузкой высоковольтного преобразователя является последовательная цепь из катушки и разрядника. Как только напряжение достигнет уровня пробивки разрядника, происходит разряд. Этот разряд дает возможность передать всю энергию высоковольтного импульса катушке из проволоки. Эта катушка преобразовывает высоковольтный импульс в электромагнитный импульс высокой амплитуды. Цикл повторяется несколько сот раз в секунду и зависит от частоты работы преобразователя.

Схема прибора


В роли разрядника будет использоваться один переключатель – его не нужно будет нажимать. А другой для коммутации.

Что нужно для сборки?


— Аккумуляторы 3,7 В – aliexpress
— Корпус – aliexpress
— Преобразователь высокого напряжения – aliexpress
— Переключатели две штуки – aliexpress
— Супер клей.
— Горячий клей.

Сборка


Берем корпус и сверлим отверстия под переключатели. Один с низу, другой с верху. Теперь делаем катушку. Наматываем по периметру корпуса. Витки фиксируем горячим клеем. Каждый виток отделен друг от друга. Катушка состоит из 5 витков. Собираем все по схеме, припаиваем элементы. Вставляем изоляционную прокладку между контактами высоковольтного выключателя, чтобы искра была внутри, а не снаружи. Закрепляем все детали внутри корпуса, закрываем крышку корпуса.

Требования безопасности

Будьте особо осторожны – очень высокое напряжение! Все манипуляции со схемой производите только после отключения источника питания.
Не используйте этот электромагнитный уничтожитель рядом с медицинским оборудование, или другим оборудованием, от которого может зависеть человеческая жизнь.

Результат работы магнитной пушки


Пушка лихо вышибает почти все чипы, конечно есть и исключения. Если у вас имеются ненужные электронные устройства можете проверить работу на них. Уничтожитель электроники имеет очень маленький размер и спокойно умещается в кармане.
Проверка на осциллографе. Держа щупы на расстоянии и не подключая, осциллограф просто зашкаливает.

Испытания


Выводим из строя мигающий светодиод со встроенным контроллером.


Ломаем микроволновую печь.

Видео инструкция сборки.

sdelaysam-svoimirukami.ru

Как сделать компактный EMP излучатель на базе браслета своими руками!


Всем доброго времени суток! В одной из своих авторских статей, я показывал как можно сделать очень простой EMP излучатель, с помощью которого можно сводить с ума электронику и всячески на неё воздействовать, но тот EMP излучатель ни как не воздействовал на телефоны с металлической крышкой, а также был довольно громоздким. В сегодняшней статье я бы вам хотел показать как сделать улучшенную модель скрытного EMP излучателя с креплением на руку своими руками. Данная модель не только имеет малогабаритные и удобные размеры но и способна влиять на «экранированные» устройства (в моем случае телефон xiaomi)

Ну что ж, самоделка очень интересная, и способно показать новичкам на практике воздействие электромагнитных импульсов, в общем не будем тянуть.

Осторожно! Высокое напряжение!


И так для изготовления скрытной версии EMP излучателя нам понадобится:
-высоковольтный преобразователь на 3-6 вольт (брал тут на Али)
-трубочка от пластиковой ручки
-кусочек резины или гибкого пластика для изоляции
-плотная ткань
-иголка и нитки
-провода
-выключатель без фиксатора
— источник питания от 3-6 вольт (я использую аккумулятор от квадрокоптера на 3,7 вольта 500 mah. Очень не советую для данных моделей использовать аккумулятор 18650, так как мой прошлый модуль от него сгорел, да и вообще желательно использовать 3-4 вольта для питания)
-термо усадка
-мини высокочастотная катушка (я использую от катушку для съёма магнитного поля с магнитной ленты кассет от старого магнитофона, можно попробовать смотать самому, но данная катушка дала наилучший результат, к тому же она очень маленькая)
-изолента
-трубочка от капельницы
-два провода типа «папа» (если аккумулятор как у меня)

Из инструментов нам также понадобится:
-паяльник и мелочи для пайки
-термо клей
-ножницы
-пинцет
-швейная машинка


И так первым делом необходимо сшить из ткани крепеж на руку, (сестра любезно согласились).
Должно получиться что-то вроде этого, для крепления самого устройства и удобного расположения под кнопку включения (на перчатке-браслете следы термо клея от прошлых самоделок):

Теперь возьмём высоковольтный преобразователь и припаяем к одному из его входному поводу кнопку, к этой кнопки припаиваем провод типа «папа», а к другому входному проводу также припаиваем провод типа «папа»
(Данные провода нужны только в случае с таким же аккумулятором, если у вас обычный источник питания то используйте обычные провода) должна получиться вот такая схема:

С помощью проводов подключаем источник питания к нашему высоковольтному модулю, соблюдая полярность:

Тестируем:
Располагаем два конечных провода на расстоянии 0.5 — 2 см, нажимаем на кнопку и если происходит электрический разряд между кантактами то всё работает.

Внимание! Будьте осторожны! Высокое напряжение!


Возьмём обычную трубочку от ручки и отрезаем с помощью небольшой пилки или паяльника вот такую заготовочку длиной 2-3 см:


Вставляем один из выходных проводов высоковольтника в нашу заготовку, но не глубоко, провод должен уходить внутрь не глубже чем 5 мм, затем фиксируем все с помощью термо клея:

Берём нашу высокочастотную катушку для снятия магнитного поля с лент кассет. На таких катушках обычно 4 контакта, так как там обычно 2 в катушки, с помощью мультиметра прозваниваем их и определяем какие контакты относятся к одной катушке, после чего спаиваем их последовательным образом (так будет наибольшее сопротивление, нежели от параллельного спаивания) затем припаиваем к двум оставшимся контактам два провода, после чего один из них также вставляем внутрь кусочка от пластиковой трубочки, а второй провод припаиваем к оставшемуся проводу высоковольтника.
Теперь нужно сделать подгонку контактов: пробным путем регулируем расстояние между проводами внутри трубочки, нужно установить максимальное расстояние, но так чтобы разряд всё равно происходил, после нахождения этого расстояния фиксируем провода с помощью термо клея, но так чтобы внутрь трубочки мог проходить воздух, это важно, опыты показали если там будет гермитизация, то после нескольких разрядов они перестают происходить, скорее всего это из-за взаимодействия тока с электрическим полем.
В общем должно получиться вот так:

Тестируем нашу заготовку на электронном устройстве (в моем случае это пока планшет, так как на телефон я снимаю), подносим его к катушке и нажимаем кнопку, если планшет начинает тупить и самопроизвольно включить приложения и вообще сходить с ума, то всё сделано правильно:


Теперь нужно заизолировать все контакты с помощью термо усадки, а на высоковольтные провода надеваем кусочки трубочек от капельницы, также желательно все замотать изолентой. И да делать всё это нужно с отключеным от высоковольтника источника питания:


Ну и начинаем финальную сборку нашей перчатки:
Для начала приклеиваем к ней наш источник питания, приклеивайте так чтобы было удобно:

Затем приклеиваем наш модуль, входными проводами к ладони:

Рядом с высоковольтником приклеиваем кусочек резины или гибкого пластика (конечно лучше всего изолировать полностью всю перчатку таким вот образом):

На нашу изоляцию приклеиваем высокочастотную катушку и аккуратно размещаем провода:

Разрядник также приклеиваем как можно аккуратнее и также желательно на изоляцию (я бы приклеил, но у меня не хватило длины провода) конечно выглядит не очень аккуратно, наверно термо клей и ткань и руки не из того места несовместимые вещи:

Затем приклеиваем нашу кнопочку на край всей перчатки, примерно вот таким вот образом:

Ну вот и всё! Наша EMP перчатка готова и осталось только ее протестировать! Надеваем перчатку на руку, ещё раз проверяем изоляцию и пробно нажимаем на кнопку, затем берём любой телефон, включаем его и подносим к катушке, при этом телефон даже с металлической крышкой начинает жутко тупить, и так почти со всеми электронными устройствами, калькулятор вообще сам включается, дальность с моим аккумулятором примерно 5-10 см от катушки. Конечно данная самоделка больше подходит для развлечения чем для практической пользы, но такая простая самоделка может наглядно показать новичкам в мире физики и электроники действие электромагнитных импульсов на микросхемы и проводники, которые не так уж и просто показать.

Вот подробное видео с испытаниями и сборкой:


Ну и всем спасибо за внимание! Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Электромагнитный импульсный генератор – ЧАСТЬ 1

Этот серьезный проект показывает, как получить импульс электромагнитной энергии в несколько мегаватт, который может нанести непоправимый вред электронному компьютеризированному и чувствительному к электромагнитным помехам коммуникационному оборудованию. Ядерный взрыв вызывает подобный импульс, для защиты от него электронных устройств необходимо принимать специальные меры. Этот проект требует накопления смертельного количества энергии, и его не следует пытаться реализовать вне специализированной лаборатории. Подобное устройство можно использовать для вывода из строя компьютерных систем управления автомобилем с целью остановки автомобиля в неординарных случаях угона или если за рулем находится пьяный

Рис. 25.1. Лабораторный электромагнитный импульсный генератор

и опасный для окружающих автомобилистов водитель. Электронное оборудование можно протестировать с помощью электронного импульсного генератора на чувствительность к мощным импульсным помехам – к молниям и потенциальному ядерному взрыву (это актуально для военного электронного оборудования).

Проект описан здесь без указания всех деталей, указаны только основные компоненты. Используется дешевый открытый искровой разрядник, но он даст только ограниченные результаты. Для достижения оптимальных результатов необходим газовый или радиоизотопный разрядник, который эффективен для создания помех как при потенциальном ядерном взрыве (рис. 25.1).

Общее описание устройство

Генераторы ударной волны способны вырабатывать сфокусированную акустическую или электромагнитную энергию, которая может разрушать предметы, применяться в медицинских целях, например, для разрушения камней во внутренних органах человека (почках, мочевом пузыре и т.д.). Генератор электромагнитных импульсов может вырабатывать электромагнитную энергию, которая может разрушать чувствительную электронику в компьютерах и микропроцессорном оборудовании. Нестабилизированные индуктивно-емкостные цепи LC могут вырабатывать импульсы в несколько гигаватт за счет использования устройств взрывания провода. Эти импульсы высокой энергии – электромагнитные импульсы (в иностранной технической литературе ЕМР – ElectroMagnetic Pulses) можно использовать для тестирования твердости металла параболических и эллиптических антенн, гудков и других направленных дистанционных воздействий на предметы.

Например, в настоящее время ведутся исследования по разработке системы, которая будет выводить автомобиль из строя во время опасной погони на высоких скоростях за человеком, совершившим противоправное действие, например, угонщиком или пьяным водителем. Секрет заключается в генерации обладающего достаточной энергией импульса для сжигания электронных управляющих процессорных модулей автомобиля. Это гораздо проще выполнить, когда автомобиль покрыт пластиком или оптоволокном, чем когда он покрыт металлом. Экранирование металлом создает дополнительные проблемы исследователю, разрабатывающему практически применимую систему. Можно построить устройство и для этого тяжелого случая, но оно может быть дорогостоящим и оказать вредное воздействие на дружественные устройства, заодно выводя их из строя. Поэтому исследователи находятся в поиске оптимальных решений для мирных и военных целей применения электромагнитных импульсов (ЕМР).

Цель проекта

Цель проекта заключается в генерации пикового импульса энергии для тестирования на прочность электронного оборудования. В частности, данный проект исследует использование подобных устройств для выведения из строя транспортных средств за счет разрушения микросхем компьютера. Мы проведем эксперименты по разрушению цепей электронных устройств с помощью направленной ударной волны.

Риск

Внимание! Донный проект использует смертельно опасную электрическую энергию, которая при неправильном контакте может убить человека мгновенно.

Система высокой энергии, которая будет собрана, использует взрывающийся провод, который может создать эффекты, подобные шрапнели. Разряд системы может серьезно повредить электронику близко расположенных компьютеров и другого аналогичного оборудования.

Теории

Конденсатор С заряжается от источника тока до напряжения источника питания в течение определенного периода времени. Когда он достигает напряжения, соответствующего определенному уровню запасенной энергии, ему дается возможность быстро разрядиться через индуктивность резонансного LC-конту- ра. Генерируется мощная, недемпфированная волна на собственной частоте резонансного контура и на ее гармониках. Индуктивность L резонансной цепи может состоять из катушки и индуктивности связанного с ней провода, а также собственной индуктивности конденсатора, которая составляет около 20 нГн. Конденсатор цепи является накопителем энергии и также оказывает влияние на резонансную частоту системы.

Излучение энергетического импульса может быть достигнуто посредством проводящей конической секции или металлической структуры в форме рупора. Некоторые экспериментаторы могут использовать полуволновые элементы с питанием, подаваемым на центр катушкой, связанной с катушкой резонансной цепи. Эта полуволновая антенна состоит из двух четвертьволновых секций, настроенных на частоту резонансной схемы. Они представляют собой катушки, намотка которых имеет примерно одинаковую длину с длиной четверти волны. Антенна имеет две радиально направленные части, параллельные длине или ширине антенны. Минимальное излучение происходит в точках, расположенных по оси или на концах, но мы не проверяли на практике этот подход. Например, газоразрядная лампа будет вспыхивать ярче на расстоянии от источника, индицируя мощный направленный импульс электромагнитной энергии.

Наша тестовая импульсная система вырабатывает электромагнитные импульсы в несколько мегаватт (1 МВт широкополосной энергии), которые распространяются с помощью конической секционной антенны, состоящей из параболического рефлектора диаметром 100-800 мм. Расширяющийся металлический рупор 25×25 см также обеспечивает определенную степень воздействия. Специальный

Рис. 25.2. Функциональная схема импульсного электромагнитного генератора Примечание:

Базовая теория работы устройства:

Резонансная схема LCR состоит из указанных на рисунке компонентов. Конденсатор С1 заряжается от зарядного устройства постоянного тока током lc. Напряжение V на С1 опг*а’ ouivwrcs. соотношением:

V=lt/C.

Искровой разрядник GAP установлен на запуск при напряжении V чуть ниже50000 В. При запуске пиковый ток достигает значения:

di/dt-V/L.

Период отклика схемы является функцией от 0,16 х (LC)5. Kj jhj />»–гп ц > затем i ьтэрное гея в индуктивность схемы за VaX, причем пиковое значение тока приводит к взрыву провода и прерывает этотток йог» с{№лстшнно перед тем, как он достигнет пикового значения. Иц’ .^сп*»*»^ энергия (LP) виа*/»«сдается в виде вчрьва и в jftpcxa цл^хтигггуктосго электромагнитного излучения. Пиковая мощность ипрмоьл*тз1 описанным ниже образом и щ»«**и*гг многие мегаватты!

1.                Цикл заряд а: dv=ldt/C.

(Выражает напряжение заряда на конденсаторе в функции времени, где I – постоянный ток.)

2.                Накопленная энергия в С как функция от напряжения: £=0,5CV

(Выражает энергию в джоулях при увеличении напряжения.)

3.                Время отклика V* цикла пикового тока: 1,57 (LC)05. (Выражает время для первого пика резонансного тока при запуске искрового разрядника.)

4.                Пиковый ток вточке V* цикла: V(C/ Ц05(Выражает пиковый ток.)

5.                Исходный отклик в функции от времени:

Ldi/dt+iR+ 1/С+ 1/CioLidt=0.

(Выражает напряжение как функцию от времени.)

6.                Энергия катушки индуктивности в д жоулях: E=0,5U2.

7.                Отклик, когда схема разомкнута при максимальном токе через L: LcPi/dt2+Rdi/dt+it/С=dv/dt.

Из этого выражения видно, что энергия катушки должна направляться куда-либо в течение очень короткого времени, результатом чего является взрывное поле высвобождения энергии Е х В.

Мощный импульс в много мегаватт вд иапазонеулырвныилс<*хчастот можно получить засчет д естабилизации LCR- схемы, как показано выше. Единственным ограничивающим фактором является собственное сопротивление, которое всегда присутствует в разных формах, например: провода, пивирхнистн-лй эффект, потери в диэлектриках и переключателях и т.д- Потери могут быть минимизированы для достижения оптимальных результатов.                  электромагнитная волна рвадихастль должна излучаться антенной, которая можетбытъ в виде параболической тарелки микроволновой печи или настроенного их**» in >чг>;*ттеля. i-M. <гп1гч электромагнитная волна будетзависетъотгеометрии конструкции. Большая длина г* Х’бодз обеспечит лучшие характеристики магнитного поля В, а короткие приесда в большей степени образуют поле электрическое поле Е. Эти параметры войдут в уравнения взаимодействия эффективности излучения антенны. Наилучшим подходом здесь является экспериментирование с конструкцией антенны для достижения оптимальных результатов с использованием ваших математических знаний для улучшения основных параметров. Повреждения схемы обычно являются результатом очень высокого di/dt (поле «В») импульса. Это предмет для обсуждения!

конденсатор 0,5 мкФ с малой индуктивностью заряжается за 20 с с помощью устройства ионного заряда, описанного в главе 1 «Антигравитационный проект», и дорабатывается, как показано. Можно достичь более высокой скорости заряда с помощью систем с более высоким током, которые можно получить по специальному заказу для более серьезных исследований через сайт www.amasingl.com.

Радиочастотный импульс высокой энергии можно генерировать также и в случае, где выход импульсного генератора взаимодействует с полноразмерной полуволновой антенной с центральным питанием, настроенной на частоты в диапазоне 1-1,5 МГц. Реальная дальность действия при частоте 1 МГц – более 150 м. Такая дальность действия может быть избыточна для многих экспериментов. Однако это нормально для коэффициента излучения, равного 1, во всех других схемах этот коэффициент меньше 1. Можно уменьшить длину реальных элементов с помощью настроенной четвертьволновой секции, состоящей из 75 м провода, намотанных через интервалы или с использованием двух-трех- метровых трубок из поливинилхлорида PVC. Эта схема вырабатывает импульс низкочастотной энергии.

Пожалуйста, имейте в виду, как это уже указывалось ранее, что импульсный выход этой системы может причинить вред компьютерам и любым приборам с микропроцессорами и другими аналогичными схемами на значительном расстоянии. Всегда будьте осторожны при тестировании и использовании этой системы, она может повредить устройства, которые просто находятся рядом. Описание основных частей, использованных в нашей лабораторной системе, дает рис. 25.2.

Конденсатор

Конденсатор С, используемый для подобных случаев, должен обладать очень низкой собственной индуктивностью и сопротивлением разряда. В то же время этот компонент должен обладать способностью к накоплению достаточной энергии для генерации необходимого импульса высокой энергии заданной частоты. К сожалению, два этих требования вступают в противоречие друг с другом, их трудно выполнить одновременно. Конденсаторы высокой энергии всегда будут обладать большей индуктивностью, чем конденсаторы низкой энергии. Другим важным фактором является использование сравнительного высокого напряжения для генерации сильных токов разряда. Эти значения необходимы для преодоления собственного комплексного импеданса последовательно соединенных индуктивного и резистивного сопротивлений на пути разряда.

В данной системе используется конденсатор 5 мкФ при 50000 В с индуктивностью 0,03 мкГн. Необходимая нам основная частота для схемы низкой энергии составляет 1 МГц. Энергия системы составляет 400 Дж при 40 кВ, что определяется соотношением:

Е = 1/2 CV2.

Катушка индуктивности

Изготовить катушку для получения низкочастотного радиоимпульса легко. Индуктивность, обозначенная как L1, представляет собой сумму паразитной индуктивности проводов, искрового разрядника, устройства взрывания провода и собственной индуктивности конденсатора. Эта индуктивность входит в резонанс в широком диапазоне частот и должна выдержать высокочастотный разрядный импульс тока I. Величина общей индуктивности составляет 0,05-0,1 мкГн. Размер проводников должен учитывать ток импульса, который в идеале равен Vx(C/L)1/2. При переходном процессе ток стремится протекать по поверхности проводника вследствие высокочастотного поверхностного эффекта.

Вы можете использовать катушку из нескольких витков для экспериментов с низкими частотами с двойной антенной. Размеры определяются формулой индуктивности воздуха:

Рис. 25.7. Установка искрового разрядника для соединения с антенной при работе с низкой частотой

Применение устройство

Данная система предназначена для исследования чувствительности электронного оборудования к электромагнитным импульсам. Систему можно видоизменить для использования в полевых условиях и работы от перезаряжаемых аккумуляторных батарей. Ее энергию можно увеличить до уровня импульсов электромагнитной энергии в несколько килоджоулей, на собственный страх и риск пользователя. Нельзя предпринимать попыток изготовления своих вариантов устройства или использовать данное устройство, если вы не имеете достаточного опыта в использовании импульсных систем высокой энергии.

Импульсы электромагнитной энергии можно сфокусировать или запускать параллельно с помощью параболического отражателя. Экспериментальной мишенью может служить любое электронное оборудование и даже газоразрядная лампа. Вспышка акустической энергии может вызвать звуковую ударную волну или высокое звуковое давление на фокусном расстоянии параболической антенны.

Источники приобретении компонентов и деталей

Устройства заряда высокого напряжения, трансформаторы, конденсаторы, газовые искровые разрядники или радиоизотопные разрядники, импульсные генераторы MARX до 2 MB, генераторы ЕМР можно приобрести через сайт www.amasingl.com[21].

nauchebe.net

 

Полезная модель относится к области оружия и может быть использована, для полного и быстрого уничтожения цели любого размера, состоящей из любой поглощающей излучение материи на любом расстоянии в зоне прямой видимости. Техническим результатом полезной модели является полное разрушение атомов любой поглощающей излучение материи на элементарные частицы под действием мощного электромагнитного излучения в частотном диапазоне от 1015 Гц до 31016 Гц и выше с высокой интенсивностью фотонов свыше 100 МэВ. Электромагнитный излучатель высокой мощности, содержащий стеклянную трубу с вакуумом внутри, состоящую из прямолинейного и зигзагообразного участков, в которой расположены ионный источник электронов, ускоряющие трубчатые электроды, анод, причем анод располагается в окончании зигзагообразного участка, который снабжен сферическим свинцовым отражателем с внутренней зеркальной поверхностью, генератор высоких частот подключен к ускоряющим трубчатым электродам. Электромагнитный излучатель высокой мощности снабжен электромагнитом с обмоткой, причем между полюсами электромагнита расположен зигзагообразный участок вакуумной трубы, а обмотка подключена к генератору высоких частот.

Полезная модель относится к области оружия и может быть использована, для полного и быстрого уничтожения цели любого размера, состоящей из любой поглощающей излучение материи на любом расстоянии в зоне прямой видимости.

Известно устройство для воздействия на материальные объекты электромагнитным излучением, содержащее генератор высоких частот, вакуумированную стеклянную трубу с зигзагообразным участком, внутри которой последовательно расположены ионный источник электронов, ускоряющие трубчатые электроды и анод, расположенный в окончании зигзагообразного участка, который снабжен сферическим свинцовым отражателем с внутренней зеркальной поверхностью (патент на изобретение РФ 2409798).

Известное устройство является наиболее близким к данной полезной модели. Недостатком этого устройства является отсутствие надежного энергетического устройства для поворота заряженных частиц в зигзагообразном участке вакуумной орубы.

Техническим результатом полезной модели является полное разрушение атомов любой поглощающей излучение материи на элементарные частицы под действием мощного электромагнитного излучения в частотном диапазоне от 1015 Гц до 31016 Гц и выше с высокой интенсивностью фотонов свыше 100 МэВ.

Указанный технический результат достигается тем, что электромагнитный излучатель высокой мощности содержит стеклянную трубу с вакуумом внутри 1, состоящую из прямолинейного и зигзагообразного участков, в которой расположены ионный источник электронов 2, ускоряющие трубчатые электроды 3, 4 анод 5, причем анод располагается в окончании зигзагообразного участка, который снабжен сферическим свинцовым отражателем с внутренней зеркальной поверхностью 8, генератор высоких частот 9 подключен к ускоряющим трубчатым электродам 3, 4, согласно полезной модели, излучатель снабжен электромагнитом 6 с обмоткой 7, причем между полюсами электромагнита расположен зигзагообразный участок вакуумной трубы, обмотка 7 подключена к генератору высоких частот 9, ионный источник электронов 2 выделяет свободные электроны, ускоряющие трубчатые электроды 3, 4 и анод 5 их ускоряют, электромагнит 6 отклоняет траекторию движения заряженных частиц в зигзагообразном участке, а сферический свинцовый отражатель с внутренней зеркальной поверхностью 8 фокусирует и отражает электромагнитные СВЧ импульсы в сторону цели.

Техническим результатом изобретения является получение мощного электромагнитного излучения в частотном диапазоне от 1015 Гц до 31016 Гц и выше с высокой интенсивностью фотонов свыше 100 МэВ.

На фиг.1 представлена конструктивная схема электромагнитного излучателя высокой мощности.

На фиг.2 представлена эквивалентная схема электромагнитного излучателя высокой мощности.

Электромагнитный излучатель высокой мощности содержит стеклянную трубу с вакуумом внутри 1 (фиг.1), состоящую из прямолинейного и зигзагообразного участков, в которой расположены ионный источник электронов 2, ускоряющие трубчатые электроды 3, 4, анод 5, причем анод располагается в окончании зигзагообразного участка, который снабжен сферическим свинцовым отражателем с внутренней зеркальной поверхностью 8, генератор высоких частот 9 подключен к ускоряющим трубчатым электродам 3, 4, электромагнит 6 с обмоткой 7, причем между полюсами электромагнита расположен зигзагообразный участок вакуумной трубы, обмотка 7 подключена к генератору высоких частот 9.

Электромагнитный излучатель высокой мощности работает следующим образом.

Ионный источник электронов 2 с помощью процесса ионизации газа, расщепляет атомы на ядра и свободные электроны, которые попадают в трубу 1 и образуют электронное облако. На ускоряющие трубчатые электроды 3, 4 попеременно подаются импульсы противоположных знаков с генератора высоких частот 9. С помощью этого электронное облако ускоряется. Процесс происходит следующим образом. На электрод подается положительный импульс и он притягивает электронное облако, затем на этот же электрод подается отрицательный импульс и он отталкивает облако к следующему электроду, где происходит аналогичный процесс. На анод 5 подается высокий положительный потенциал, что усиливает процесс ускорения в зигзагообразном участке трубы 1. На обмотку 7 электромагнита 6 с генератора высоких частот 9 подается переменное напряжение. Возникающее при этом переменное магнитное поле высокой частоты отклоняет ускоренное движущееся электронное облако сначала в одну сторону, затем в другую по зигзагообразному участку трубы. Ускоренное электронное облако, пролетая по зигзагообразному участку создает вокруг последнего мощный электромагнитный импульс сверхвысокой частоты, который фокусируется и отражается сферическим свинцовым отражателем с внутренней зеркальной поверхностью 8 в сторону цели.

В результате, этот импульс, взаимодействуя с атомами материи цели, полностью разрушает их на элементарные частицы. Результатом этого является изменение структуры материи цели, что приводит к ее разрушению и уничтожению последней.

Эквивалентная схема, изображенная на фиг.2 объясняет принцип работы электромагнитного излучателя высокой мощности на примере простой электрической схемы, содержащей источник питания 10, генератор сверх высоких частот 11, индуктивную составляющую 12, активную составляющую 13, емкостную составляющую 14 сопротивления цепи проводника-излучателя 15 и сферический отражатель 16, источник питания 10 питает генератор сверх высоких частот 11, который вырабатывает ЭДС сверх высокой частоты и замыкаясь на цепь, состоящую из индуктивной составляющей 12, активной составляющей 13, емкостной составляющей 14 и проводника-излучателя 15 соединенных последовательно создает в ней переменный ток сверх высокой частоты. В этой цепи выделен проводник излучатель 15, по которому протекает ток сверх высокой частоты, в результате чего, вокруг него образуется электромагнитное поле сверх высокой частоты, отражаемое сферическим отражателем 16. Как видно из сравнения, зигзагообразный участок трубы 1 является аналогом проводника-излучателя 15.

Электромагнитный излучатель высокой мощности, содержащий стеклянную трубу с вакуумом внутри, состоящую из прямолинейного и зигзагообразного участков, в которой расположены ионный источник электронов, ускоряющие трубчатые электроды, анод, причем анод располагается в окончании зигзагообразного участка, который снабжен сферическим свинцовым отражателем с внутренней зеркальной поверхностью, генератор высоких частот подключен к ускоряющим трубчатым электродам, отличающийся тем, что излучатель снабжен электромагнитом с обмоткой, причем между полюсами электромагнита расположен зигзагообразный участок вакуумной трубы, а обмотка подключена к генератору высоких частот.

poleznayamodel.ru

Как создать электромагнитный импульс Как? Так!

Содержимое:

2 метода:

Электромагнитный импульс (ЭМИ) – это естественное явление, вызванное резким ускорением частиц (в основном, электронов), которое приводит к возникновению интенсивного всплеска электромагнитной энергии. Повседневными примерами ЭМИ могут служить следующие явления: молния, системы зажигания двигателей внутреннего сгорания и солнечные вспышки. Несмотря на то, что электромагнитный импульс способен вывести из строя электронные устройства, данную технологию можно применить для целенаправленного и безопасного отключения электронных устройств или для обеспечения безопасности персональных и конфиденциальных данных.

Шаги

Метод 1 Создание элементарного электромагнитного излучателя

  1. 1 Соберите необходимые материалы. Для создания простейшего электромагнитного излучателя вам понадобится одноразовый фотоаппарат, медная проволока, резиновые перчатки, припой, паяльник и железный прут. Все эти предметы можно приобрести в ближайшем строительном магазине.
    • Чем толще проволоку вы возьмете для эксперимента, тем мощнее получится итоговый излучатель.
    • Если вы не сможете найти железный прут, можете заменить его стержнем из неметаллического материала. Однако обратите внимание, что подобная замена негативно скажется на мощности производимого импульса.
    • В ходе работы с электрическими деталями, способными удерживать заряд, или при пропускании электрического тока через объект, мы настоятельно рекомендуем надевать резиновые перчатки, дабы избежать возможного электрического удара.
  2. создать электромагнитный импульс 2 Соберите электромагнитную катушку. Электромагнитная катушка – это устройство, которое состоит из двух отдельных, но в то же время взаимосвязанных деталей: проводника и сердечника. В данном случае в качестве сердечника будет выступать железный прут, а в качестве проводника – медная проволока.
    • Плотно обмотайте проволоку вокруг сердечника, не оставляя пробелов между витками. Не обматывайте весь провод, оставьте небольшое количество на краях обмотки, чтобы у вас была возможность подсоединить свою катушку к конденсатору.
  3. создать электромагнитный импульс 3 Припаяйте концы электромагнитной катушки к конденсатору. Конденсатор, как правило, имеет вид цилиндра с двумя контактами, а найти его можно на любой монтажной плате. В одноразовом фотоаппарате такой конденсатор отвечает за вспышку. Перед отпаиванием конденсатора обязательно вытащите батарейку из фотоаппарата, иначе вас может ударить током.
    • Пока вы будете работать с монтажной платой и конденсатором, резиновые перчатки уберегут вас от электрических разрядов.
    • Щелкните пару раз фотоаппаратом после извлечения батарейки, чтобы израсходовать накопленный заряд в конденсаторе. Из-за накопленного заряда вас в любой момент может ударить током.
  4. 4 Найдите безопасное место для тестирования своего электромагнитного излучателя. В зависимости от задействованных материалов, эффективный радиус действия вашего ЭМИ будет составлять примерно один метр в любом направлении. Как бы то ни было, любая электроника, попавшая под ЭМИ, будет уничтожена.
    • Не забывайте, что ЭМИ воздействует на все без исключения устройства в радиусе поражения, начиная от аппаратов жизнеобеспечения, вроде кардиостимуляторов, и заканчивая мобильными телефонами. Любой ущерб, причиненный этим устройством посредством ЭМИ, может повлечь за собой юридические последствия.
    • Заземленная площадка, вроде пня или пластмассового стола, является идеальной поверхностью для тестирования электромагнитного излучателя.
  5. 5 Найдите подходящий объект для испытаний. Так как электромагнитное поле воздействует лишь на электронику, подумайте о приобретении какого-то недорогого устройства в ближайшем магазине электроники. Эксперимент можно считать успешным, если после активации ЭМИ электронное устройство перестанет работать.
    • Множество магазинов канцелярских товаров торгуют достаточно недорогими электронными калькуляторами, с помощью которых вы можете проверить эффективность созданного излучателя.
  6. 6 Вставьте батарейку обратно в камеру. Для восстановления заряда необходимо пропустить через конденсатор электричество, которое впоследствии обеспечит вашу электромагнитную катушку током и создаст электромагнитный импульс. Поместите объект для испытаний как можно ближе к ЭМ излучателю.
    • Наличие электромагнитного поля, в основном, невозможно определить на глаз. Без тестируемого объекта вы не сможете подтвердить успешное создание ЭМИ.
  7. создать электромагнитный импульс 7 Дайте конденсатору зарядиться. Позвольте батарейке снова зарядить конденсатор, отсоединив его от электромагнитной катушки, затем уже в резиновых перчатках или пластиковыми щипцами снова их соедините. Работая голыми руками, вы рискуете получить удар током.
  8. создать электромагнитный импульс 8 Включите конденсатор. Активация вспышки на камере высвободит накопленное в конденсаторе электричество, которое при прохождении через катушку создаст электромагнитный импульс.
    • Созданное электромагнитное поле будет воздействовать на любую электронику, включая выключенную. Если в качестве испытуемого объекта вы выбрали калькулятор, то после включения конденсатора, и в случае успешного создания ЭМ импульса, калькулятор больше не включится.
    • В зависимости от задействованного конденсатора, необходимое напряжение для его зарядки тоже будет разным. Емкость конденсатора в одноразовом фотоаппарате составляет где-то 80-160 мкФ, а напряжение должно быть в пределах 180-330 вольт.

Метод 2 Создание портативного устройства ЭМ излучения

  1. 1 Соберите все необходимое. Создание портативного устройства ЭМИ пройдет более гладко, если при себе у вас будут все необходимые инструменты и компоненты. Вам понадобятся следующие предметы:
    • Пальчиковая батарейка
    • Соответствующий батарейный отсек
    • Медная проволока
    • Картонная коробка
    • Одноразовая камера (со вспышкой)
    • Изолента
    • Железный сердечник (желательно цилиндрической формы)
    • Резиновые перчатки (рекомендовано)
    • Простой выключатель
    • Припой и паяльник
    • Радиоантенна
  2. 2 Вытащите монтажную плату из фотоаппарата. Внутри одноразового фотоаппарата находится монтажная плата, которая и отвечает за его функционал. Для начала вытащите батарейки, а затем уже и саму плату, не забыв при этом отметить положение конденсатора.
    • Работая с фотоаппаратом и конденсатором в резиновых перчатках, вы тем самым обезопасите себя от возможного электрического удара.
    • Конденсаторы, как правило, имеют вид цилиндра с двумя контактами, прикрепленными к плате. Это одна из важнейших деталей будущего устройства ЭМИ.
    • После того как вы вытащите батарейку, щелкните пару раз фотоаппаратом, чтобы израсходовать накопленный заряд в конденсаторе. Из-за накопленного заряда вас в любой момент может ударить током.
  3. 3 Обмотайте медную проволоку вокруг железного сердечника. Возьмите достаточное количество медной проволоки, чтобы равномерно идущие витки могли полностью покрыть железный сердечник. Также убедитесь, чтобы витки плотно прилегали друг к другу, иначе это негативно скажется на мощности ЭМИ.
    • Оставьте небольшое количество провода на краях обмотки. Они нужны, чтобы подсоединить к катушке остальную часть устройства.
  4. 4 Нанесите изоляцию на радиоантенну. Радиоантенна послужит в качестве рукоятки, на которой будут закреплены катушка и плата от фотоаппарата. Оберните основание антенны изолентой, дабы уберечься от удара током.
  5. 5 Закрепите плату на плотном куске картона. Картон послужит в качестве еще одного слоя изоляции, который убережет вас от неприятного электрического разряда. Возьмите плату и изолентой закрепите ее на картоне, но так, чтобы она не закрывала дорожки электропроводящей цепи.
    • Закрепите плату лицевой стороной вверх, чтобы конденсатор и его проводящие дорожки не контактировали с картоном.
    • На картонной подложке для печатной платы также должно хватить достаточно места для батарейного отсека.
  6. 6 Закрепите электромагнитную катушку на конце радиоантенны. Поскольку для создания ЭМИ электрический ток должен пройти через катушку, неплохо бы добавить второй слой изоляции, поместив небольшой кусочек картона между катушкой и антенной. Возьмите изоленту и закрепите катушку на куске картона.
  7. 7 Припаяйте источник питания. Найдите на плате разъемы для батарейки и соедините их с соответствующими контактами батарейного отсека. После этого можете закрепить все это дело изолентой на свободном участке картонки.
  8. 8 Подсоедините катушку к конденсатору. Необходимо припаять края медной проволоки к электродам вашего конденсатора. Между конденсатором и электромагнитной катушкой также следует установить переключатель, который бы управлял потоком электроэнергии между этими двумя компонентами.
    • Во время данного этапа сборки устройства ЭМИ вы должны оставаться в резиновых перчатках. Из-за оставшегося заряда в конденсаторе вас может ударить током.
  9. 9 Прикрепите картонную подложку к антенне. Возьмите изоленту и прочно прикрепите картонную подложку вместе со всеми деталями к радиоантенне. Закрепите ее над основанием антенны, которое вы уже должны были обмотать изолентой.
  10. 10 Найдите подходящий объект для испытаний. Простой и недорогой калькулятор идеально подойдет для тестирования портативного устройства ЭМИ. В зависимости от материалов и оборудования, использованных при конструировании вашего устройства, ЭМ поле будет работать либо в непосредственной близости от катушки, либо покрывать расстояние до одного метра вокруг нее.
    • Любое электронное устройство, попавшее в радиус действия ЭМ поля, будет выведено из строя. Убедитесь, что рядом с выбранной тестовой площадкой нет электронных приборов, которым бы вы не хотели навредить. Вся ответственность за поврежденное имущество будет лежать на вас.
  11. 11 Протестируйте свое портативное устройство ЭМИ. Проверьте, чтобы переключатель устройства находился в положении «ВЫКЛ», после чего вставьте батарейки в батарейный отсек на картонной подложке. Держите устройство за изолированное основание антенны (словно протоновый ускоритель из «Охотников за привидениями»), направьте катушку в сторону объекта для испытаний и переключите выключатель в положение «ВКЛ».
    • Если вы сомневаетесь в своих знаниях и навыках соединения электронных компонентов, при работе с устройством в качестве дополнительной меры предосторожности наденьте резиновые перчатки.
    • В случае успеха эксперимента, тестируемый объект вкупе с другой электроникой, оказавшейся в эффективном диапазоне ЭМ поля, перестанет работать.
    • В зависимости от задействованного конденсатора, необходимое напряжение для его зарядки тоже будет разным. Емкость конденсатора в одноразовом фотоаппарате составляет где-то 80-160 мкФ, а напряжение должно быть в пределах 180-330 вольт.

Советы

  • Размер медной проволоки и длина катушки определят силу и радиус электромагнитного импульса. В целях безопасности прежде чем приступать к созданию большего, более мощного излучателя, начните с небольшого устройства, чтобы проверить эффективность вашей конструкции.

Предупреждения

  • Вся ответственность за поврежденное электромагнитным полем имущество будет лежать на вас.
  • Работать с электромагнитными импульсами крайне опасно. Существует высокая вероятность поражения электрическим током, а в более редких случаях – взрыва, пожара или повреждения электроники. Перед созданием медной катушки уберите из комнаты или рабочей зоны все электронные приборы. Любые электронные устройства на расстоянии нескольких метров от импульса будут повреждены.

Что вам понадобится

  • Медная проволока (ЭМ излучатель)
  • Одноразовый фотоаппарат (ЭМ излучатель)
  • Железный прут (ЭМ излучатель)
  • Припой и паяльник (ЭМ излучатель)
  • Пальчиковая батарейка (портативное устройство ЭМИ)
  • Батарейный отсек (портативное устройство ЭМИ)
  • Медная проволока (портативное устройство ЭМИ)
  • Картонная коробка (портативное устройство ЭМИ)
  • Одноразовый фотоаппарат (со вспышкой; портативное устройство ЭМИ)
  • Изолента (портативное устройство ЭМИ)
  • Железный сердечник (желательно цилиндрической формы; портативное устройство ЭМИ)
  • Резиновые перчатки (рекомендовано для обоих устройств)
  • Простой электрический выключатель (портативное устройство ЭМИ)
  • Припой и паяльник (портативное устройство ЭМИ)
  • Радиоантенна (портативное устройство ЭМИ)

Прислал: Суханова Анна . 2017-11-12 11:11:49

kak-otvet.imysite.ru

Глушитель автомобилей: Гуманный подход | Журнал Популярная Механика

В фантастических рассказах полиция (или наоборот, преступники) нередко обладает специальными излучателями (или, например, распылителями аэрозолей), позволяющими глушить двигатели автомобилей на расстоянии. Нет никакого сомнения в том, что настоящие полицейские (как и криминальные элементы) мечтают о таком оружии. Компания Eureka Aerospace готова их осчастливить в течение ближайших двух лет.

Если верить пресс-службе Eureka Aerospace, работа их пушки будет выглядеть примерно так…

Eureka Aerospace уже вовсю испытывает рабочий прототип пушки HPEMS (High Power Electromagnetic System, «Электромагнитная система высокой мощности»). Устройство имеет габариты 150x90x30 см и весит 90 кг — в карман такую штуку не положишь, зато ее можно легко установить на крыше автомобиля (милицейской легковушки, например) или, скажем, на танковой броне.

Пушка «стреляет» направленным пучком микроволнового излучения — подобного тому, что используется в микроволновых печках, но обладающего несколько иной частотой (излучатели бытовых печей обычно функционируют на частоте в 2,45 ГГц, а излучатель пушки — на частоте в 300 МГц). Устройство посылает в сторону цели узкий волновой пучок, сфокусированный направленной антенной. Разрушительный электромагнитный импульс продолжительностью всего в 50 наносекунд проникает в бортовую электросеть автомобиля через уязвимые точки. К их числу относятся нити накаливания ламп, крепежные гайки и болты, контактирующие с металлом кузова, а также антенна ботового радиоприемника. Количество и качество подобных «точек доступа» является одним из главных параметров, определяющих разрушительный потенциал выстрела. Дело в том, что краска, который покрыты современные автомобили, почти не проводит электрический ток и в данном случае начинает играть роль волнового экрана.

Тем не менее, в абсолютном большинстве случаев проникающая способность импульса оказывается вполне достаточной для того, чтобы уничтожить всю бортовую электронику, перегрузить провода и вызвать разнообразные повреждения электрических цепей. В итоге пушка оказывается способна остановить не только инжекторные, но и карбюраторные двигатели, не использующие сложную электронику и обладающие чисто электрической схемой зажигания. Со старыми механическими дизелями электромагнитный импульс сделать ничего не сможет, однако выход из строя бортовой сети машины все равно может оказаться весьма серьезным препятствием для дальнейшего движения, тем более что работу современных дизелей все-таки контролирует куча электронных устройств.

В ходе испытаний текущий прототип микроволновой пушки, установленный на крыше легкового автомобиля, продемонстрировал способность «выключать» другие машины на дистанции до 15 м (интересно, сколько при этом было загублено автомобилей!). В течение ближайших 2 лет компания намерена увеличить дальность действия своей пушки до 180 м.

Разработка предназначена, в первую очередь, для американских военных, несущих ощутимые потери от атак автомобилей, начиненных взрывчаткой. Говорит Джеймс Татойан (James Tatoian), глава компании Eureka Aerospace: «Идея весьма проста: когда автомобиль приближается на определенную дистанцию к охраняемому объекту, вы предупреждаете его о недопустимости дальнейшего движения. Если он не подчиняется, вы просто выключаете его, не позволяя нарушителю двигаться дальше».

Аналогичным образом устройство может использоваться для остановки нарушителя, удирающего от патрульного экипажа по оживленной трассе. По заверениям разработчиков, выстрелы их пушки абсолютно безопасны для людей и вообще любых живых организмов. Правда, возникает вопрос: а что будет, если под луч попадет человек с имплантированным стимулятором сердечного ритма или иным устройством подобного рода? С точки зрения полиции и военных ответ очевиден: если вы решили податься в преступники или террористы-смерники, потрудитесь быть абсолютно здоровым.

Полиция будущего будет экипирована и другими полезными устройствами — например, дротиками с системой GPS («Выстрелил и забыл»). Но и преступность не стоит на месте — о современных технологичных преступлениях читайте: «Кража личности».

По информации Discovery Channel

www.popmech.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *