Галактики и туманности – (65 ) » uCrazy.ru —

Содержание

Туманности или галактики. Занимательно о космогонии

Туманности или галактики

Это самый молодой раздел науки о происхождении и развитии небесных тел и их систем. Молодой, потому что только в нашем XX столетии новая мощная астрономическая техника позволила подтвердить предположение о существовании других галактик — огромных звездных систем, вроде нашей Галактики, — насчитывающих в своем составе сотни миллиардов звезд, объединенных, как правило, в различные коллективы. Еще 100 лет назад многие астрономы считали нашу Галактику вообще единственной системой во вселенной. За ее пределами — пустота. Как огромный пчелиный рой висит Галактика среди пустого Ньютонова пространства без конца и без края. Рой этот по форме напоминает жернов или чечевицу. Кроме отдельных звезд и звездных скоплений, в состав Галактики входило довольно большое количество «косматых объектов», как называли в прошлом столетии маленькие туманные пятна на небе неизвестной природы и непонятного состава. Правда, В. Гершель сумел разглядеть в некоторых из них звезды, но большинство их оставалось мутными пятнышками, неразличимыми ни в какой инструмент. Их так и назвали — «туманности». Интересовали они специалистов не очень сильно. Спорили в основном по частному вопросу, являющемуся следствием космогонических разногласий: является ли хорошо наблюдаемая туманность в созвездии Андромеды газовым зародышем будущей планетной системы, входящей в состав Галактики, как то утверждал еще П. Лаплас, или это самостоятельная звездная система, удаленная от нас на такое расстояние, что не может быть разложена на звезды ни одним из имевшихся инструментов?

В конце XIX столетия астрономы получили в руки новое мощное оружие исследования — спектральный метод. Свет звезд, пропущенный через призму спектроскопа, давал практически непрерывный спектр, пересеченный темными линиями поглощения. Нагретый же до свечения газ в тех же условиях имел спектр линейчатый.

Спектр туманности Андромеды, полученный в 1899 году, оказался непрерывным. Вам кажется, что вопрос можно закрыть? Что звездный состав туманности доказан? Ничуть не бывало. Спор только начинал разгораться по-настоящему. Почему бы не предположить, говорили сторонники небулярной природы туманности, что перед нами скопление холодного газа, которое светится не само, а только отражает свет звезд? Потому и спектр его непрерывный…

Позвольте, сокрушались противники, но где же те звезды, свет которых туманность отражает?

Звезд не было.

Лишь в 1917 году астрономы Р. Кертис и Г. Ричи заметили в туманности Андромеды несколько ярких точек. Словно крохотные искорки вспыхнули они и через несколько дней исчезли. Наблюдатели решили, что это могли быть новые звезды, заметные в моменты наибольшего блеска. По величине зафиксированного блеска нашли они и расстояние до них. Оно показалось чудовищно большим — раз в пятнадцать больше диаметра всей Галактики. Это был важный результат, ибо говорил он о том, что туманное пятнышко спиральной структуры, расположенное в созвездии Андромеды и имеющее каталожный шифр NGG-224 — внегалактический объект!

Возник «великий спор» — являются ли вообще все туманности внегалактическими объектами или принадлежат к населению нашей Галактики? Эти разногласия уже захватывали столь принципиальные вопросы строения мира, что не могли оставить равнодушным никого из астрономов. В 1920 году в Вашингтоне была даже организована дискуссия между двумя представителями разных точек зрения на этот счет. X. Шепли стоял на позициях «длинной шкалы» расстояний, его противник X. Кертис ратовал за расстояния короткие. Но разрешить противоречия могли только дальнейшие исследования.

И вот в 1923 году молодой астроном Э. Хаббл, получив возможность работать на самом большом в те времена телескопе на обсерватории Маунт-Вилсон, навел его двух с половиной метровое зеркало на туманность Андромеды. Наконец-то! На фотопластинке по краям туманности отчетливо виднелись звезды. К концу того же года Э. Хаббл отыскал там и переменную звезду, похожую по своим свойствам на цефеиду. А цефеиды как раз служили земным наблюдателям для определения расстояний до звезд, и «Великий спор» был закончен. Туманность Андромеды находилась за пределами нашей Галактики и имела явно звездный состав.

Вы спросите: а как же остальные туманности? В остальных в те годы пока звезд не обнаружили. Можно было бы, конечно, считать, что все однотипные объекты, скажем, спиральной структуры, имеют одинаковый состав, например, являются звездными системами. Но существовали туманности и других видов… В общем, тут надо было еще поработать.

Помните, в главе, посвященной планетной космогонии, мы довольно много внимания уделили работам великолепного английского астронома Дж. Джинса? Тогда разговор шел о происхождении солнечной системы. На самом же деле труды этого астронома охватывали и звезды, и туманности. Его исследования относились к 1916–1919 годам, когда звездный состав NGG-224 еще не был доказан и все туманности полагали состоящими из газа.

Вначале, по мнению Дж. Джинса, существовало пространство, занятое равномерно распределенным разреженным газом; неким первичным хаосом плотностью этак 10-30 г/см3, или 10-15 г/км3. Ну что же, если читателю удастся представить себе столь жидкий туман, можно позавидовать его воображению.

По каким причинам в этом «всемирном киселе» начали возникать первичные сгущения и неравномерности, обсуждать смысла нет. Причин может быть много, ими занимается раздел физики под названием «газовая динамика». Исследуя теорию гравитационного сжатия и вращения таких первичных облаков газа, Дж. Джинс пришел к выводу, что на ранней стадии образуются туманности правильной сферической формы. Затем, продолжая сжиматься, а следовательно, и ускоряя свое вращение, такая туманность сплющивается. Постепенно с краев эллиптического диска начинается истечение вещества, которое образует спиральные витки. Причину образования спиральных рукавов Дж. Джинс видел в приливах, которые вызывались гравитационными полями соседних туманностей. А уж повышенная плотность вещества в спиральных ветвях служила для образования в них звезд.

В 1925 году, когда Дж. Джинс впервые изложил свою теорию образования спиральной структуры туманностей, американский астроном Э. Хаббл составил первую классификацию туманностей. Прежде всего он разделил их на три большие группы: неправильные, эллиптические и спиральные.

Оставив в стороне первый тип туманностей, он выстроил все остальные в некоторую последовательность форм. Причем началом последовательности явились как раз сферические туманности. Э. Хаббл присваивает им индекс Е0, что означает «эллиптические — нулевого сжатия». Дальше, в соответствии с соотношением большой и малой полуосей эллипсоидов, шли классы Е1, Е2, … Е7. Более сплюснутых туманностей Э. Хаббл найти не сумел.

Затем шли две ветви туманностей спиральных. Одна ветвь объединяла нормальные спирали, другая — пересеченные.

Дж. Джинс был очень доволен хаббловской классификацией. Она лила воду на его мельницу, полностью соответствуя нарисованной им последовательности эволюции туманностей. Да и Э. Хаббл, несмотря на то, что старался не связывать классификацию с эволюцией, в глубине души был уверен в том, что Дж. Джинс прав. В общем, все было очень хорошо. Классификация Хаббла и гипотеза Джинса стали классическими и вошли во все учебники. Правда, с формированием спиральных структур галактик гипотеза Дж. Джинса справлялась не так успешно. Но первая половина гипотезы — превращение шаровых скоплений газа в эллиптические — сомнений почти не вызывала. И вдруг… Это «вдруг» относится ко времени, когда вторая мировая война шла к своему концу: шел 1944 год. А началось все раньше.

В начале 30-х годов в Соединенные Штаты из Германии с Гамбургской обсерватории приехал упоминавшийся уже нами астроном В. Бааде. Насовсем ли он приехал или временно, сейчас за давностью времени сказать трудно. Известно лишь одно — с 1931 года он прилежный сотрудник обсерватории Маунт-Вилсон, и это вполне разумно, поскольку любезному фатерланду было в ту пору не до звезд. Американцы же предоставили немцу возможность пользоваться 2,5-метровым рефлектором, несмотря на то, что подданство В. Бааде сохранял германское. И насколько это было разумно — неизвестно. Впрочем, стань он к 1941 году американским гражданином, не случилось бы, может быть, и того «вдруг», ради которого мы заинтересовались далеко не астрономическими подробностями жизни этого специалиста высокого класса.

24 июня 1941 года президент США Ф. Рузвельт сделал заявление о поддержке Советского Союза в войне с фашистской Германией. Подданный «тысячелетнего рейха» В. Бааде был объявлен местными властями «союзником врага», и ему было запрещено покидать пределы обсерватории. Потом был Пирл-Харбор и введение обязательного затемнения в Лос-Анджелесе и прилегающих к нему городах. Астроном В. Бааде, пользуясь особенно темными ночами, фотографировал избранные небесные объекты. И вот наступил день, когда, просматривая пластинки, на которых остались изображения эллиптических туманностей, В. Бааде обнаружил, что они тоже состоят из звезд. Сомнений в этом не было. Он даже растерялся, прежде чем почувствовал радость по поводу открытия. Ведь оно означало, что теорию Дж. Джинса следовало отправить в архив. Помните, все рассуждения английского астронома были основаны на том, что уж эллиптические туманности — это точно газовые образования, которым еще предстоит долгий путь эволюции, прежде чем в них появятся первые звезды. Теперь же фундамент под всем зданием стройной и красивой теории Дж. Джинса рассыпался. Космогонистам предстояло все начинать сначала.

Поделитесь на страничке

Следующая глава >

fis.wikireading.ru

самые красивые объекты во Вселенной

Содержание страницы:

Самые красивые туманности

Туманность Ориона

В созвездии Орион находится Облако Ориона. Это обширнейшая область, включающая в себя множество различного типа туманностей, крупнейшие из которых —  Конская Голова и Петля Бернарда.

От Земли до этого уникального объекта 1344 световых года, а для полёта по её поперечнику свету потребуется 33 года. Это гигантское космическое облако – один из самых известных и притягательных объектов. Особенно хорошо его наблюдать в зимнее время, когда Орион проходит по северной части горизонта. С десятикратным увеличением уже можно распознать яркое вытянутое пятно. Если увеличение более сильное, пятно представляется дугой натянутого лука, более яркое в центре и тускнеющее к концам.

Конская голова.

Это тёмная туманность, именуемая ещё «Голова Лошади». Красное свечение, вызванное ионизацией водорода, служит прекрасным фоном для тёмного пятна характерной формы.

Плотные слои пыли активно поглощают свет, и от этого туманность имеет тёмные тона. Газы, вырывающиеся из туманности, летят в магнитном поле большой силы.

В основание Конской Головы яркие пятна – это формирующиеся звёзды.

Орёл.

Данная туманность окружает рассеянное звёздное скопление и расположена в созвездие Змеи.

В 1995 году с помощью телескопа «Хаббл» были получены снимки высокого качества, позволившие детально рассмотреть интересный объект.

В нём выделяются уникальные области: «Столпы Творения», «Фея», «Орлиные Яйца».

При рассмотрении через телескоп чётко видны звёзды, заключённые в плевру туманности. Она имеет форму расправленных крыльев орла.

Туманность Андромеды.

Это ближайшая к нам большая галактика, имеющая, по сравнению с нашей, в своём составе звёзд в 3 – 5 раз больше. Андромеда больше нашей галактики в 2,6 раза, и со скоростью 300 км/сек летит прямо на нашу галактику. Примерно через 5 миллиардов лет бедный Млечный Путь и Андромеда столкнутся.

Разновидности туманностей

Спектральный анализ газовых туманностей выявляют линии всех главных элементов. Это водород, гелий, азот, кислород, аргон, сера, неон. Как и везде во всей Вселенной, превалируют два первых элемента.

Классификация туманностей производится по критериям излучения или поглощения света. Исходя из этого, они могут быть тёмными и светлыми. Тёмные туманности в космосе поглощают световые излучения источников, которые находятся за ними, и поэтому мы их видим. рассмотрим их основные виды:

Светлые обладают способностью самостоятельного излучения света .

Тёмные. Данный тип представляет из себя плотные облака, состоящие из пыли и газа, непрозрачной из-за поглощения ею света. Часто фоном им служат светлые туманности. Иногда такое тёмное облако можно увидеть и на фоне нашей галактики. Пример тому – туманность «Угольный Мешок». В полупрозрачных областях этих объектов просматриваются структуры, похожие на волокна. Это объясняется присутствием магнитных полей, возникающих от электрических зарядов частичек пыли. Вещество в таком случае движется вдоль магнитных линий.

Отражательные. Такие туманности подсвечиваются звёздами. Основные объекты этого типа располагаются возле плоскости Млечного Пути. Иногда они находятся выше этой плоскости, и звёзды галактики подсвечивают их. Отражательную туманность «Ангел» можно отыскать в 300 парсеках над плоскостью нашей галактики. Некоторые представители таких туманностей могут походить на кометы, имея в головной части переменную звезду. Но размеры таких образований не превышают сотых долей парсека.

Ионизированные излучением. Такие туманности получаются, если участок межзвёздного газа мощно ионизирован излучением звезды или иного источника. Чаще такими участками становятся облака ионизированного водорода. Если облако состоит из углерода, то он может быть ионизирован светом центральных звёзд. Возможно возникновение туманностей этого типа и вокруг сильного рентгеновского источника. Активные ядра галактик, да и квазары тоже могут стать такими источниками.

Планетарные. Звезда-гигант, сбрасывая свою оболочку, может образовать планетарную туманность. Формы туманностей более разнообразны: они могут иметь вытянутую, струйную, структуру или быть похожими на кольцо. Такие образования недолговечны и невелики. Яркими представителями их являются объекты «Кошачий Глаз» и «Песочные Часы».

Остатки звёзд. Очень яркие туманности получаются после взрывов сверхновых звёзд и носят имя остатков вспышек сверхновых. Они достаточно важны при формировании структуры газа межзвёздного пространства. Если же взрывается новая звезда, то создающаяся при этом туманность недолговечна и слаба, а также невелика по размерам. Известнейшая Крабовидная туманность – типичный и прекрасный представитель этого класса.

Вокруг звезды Вольфа-Райе можно наблюдать  туманность, именуемую «Шлем Тора».

comments powered by HyperComments

light-science.ru

Типы/классы туманностей — Астрономический справочник

Сегодня рассмотрим и познакомимся с не менее важной темой, чем типы галактик — это типы туманностей. Они красивые, величественные, завораживающие и несмотря на то, что их сложно обнаружить в телескоп, любители наблюдений уделяют немало времени на их поиски. Они уникальные, каждая не похожа на другую. Размеры в пространстве сравнительно небольшие и удалены от нас на небольшие расстояния (с точки зрения астрономических величин). Состоят преимущественно из водорода — 90% и гелия — 9,9%. Принадлежность к тому или иному созвездию каждой из туманностей рассматривать в рамках этой статьи не будем, задача наша другая. И давайте я уже не буду разглагольствовать, а приступлю непосредственно к сути.

1. Диффузная туманность

Диффузная туманность «Лагуна»

Диффузные туманности, в отличие от звезд, не имеют собственного источника энергии. Свечение внутри них происходит благодаря горячим звёздам, которые находятся внутри или рядом с нею. Такие туманности в большей степени встречаются на «ветвях» галактик, там где происходит активное звёздообразование и являются веществом, которое не вошло в состав звезды.

Диффузные туманности преимущественно красного цвета — это связано с обилием водорода внутри них. Зелёный и синий цвета говорят нам о других химических элементах, таких как гелий, азот, тяжелые металлы.

К таким туманностям относится и самая популярная и доступная для наблюдения в приборы с небольшим увеличением — туманность Ориона в созвездии Ориона, о которой я упоминал в статье «наблюдение в бинокль».

Диффузные туманности ещё часто называют эмиссионными.

2. Отражательная туманность

Отражательная туманность «Голова Ведьмы»

Отражательная туманность не излучает никакого собственного света. Это облако газа и пыли, которое отражает свет от рядом расположенных звезд. Также как и диффузные туманности, отражательные находятся в областях активного звёздообразования. В большей степени имеют синеватый оттенок, т.к. он рассеивается лучше остальных.

На сегодня известно не так много туманностей этого типа — около 500.

Некоторые источники не выделяют отражательную туманность отдельно, а относят её к диффузионным.

3. Тёмная туманность

Тёмная туманность «Конская голова»

Такая туманность возникает из-за перекрытия света от объектов, расположенных за нею. Это облако межзвёздной пыли. По составу практически идентична предыдущей отражающей туманности, отличается лишь расположением источника света.

Как правило, тёмная туманность наблюдается вместе с отражательной или диффузной. Отличный пример на фотографии выше «Конская голова» — здесь тёмная область перекрывает свет от диффузной туманности за нею гораздо большего размера. В любительский телескоп такие туманности будет крайне сложно или почти невозможно увидеть. Однако, в радиодиапазоне и инфракрасном такие туманности активно излучают электромагнитные волны.

 4. Планетарная туманность

Планетарная туманность M 57

Пожалуй, самый красивый тип туманностей. Как правило, такая туманность является результатом конца жизнедеятельности звезды, т.е. её взрыв и разброс в космическое пространство газа. Несмотря на то, что взрывается звезда, её называют планетарной. Это связано с тем, что при наблюдении такие туманности выглядят как планеты. Большинство из них имеют круглую или овальную форму. Оболочка газа расположенная внутри освещается остатками самой звезды.

Всего открыто около двух тысяч планетарных туманностей, хотя только в нашей галактике Млечный путь их насчитывают больше 20000.

5. Остаток сверхновой звезды

Крабовидная туманность M 1

Сверхновая звезда — это резкое возрастание яркости звезды в результате её взрыва и выброса огромного количества энергии во внешнюю космическую среду.

По своей сути и составу очень напоминают планетарные туманности. В результате такого взрыва в центре образуется нейтронная звезда или чёрная дыра. Температура газа вследствие столкновения веществ может достигать сотни тысяч градусов, в связи с чем она становится источником рентгеновского излучения.

На фотографии выше показан отличный пример взрыва звезды, у которой выброшенный газ ещё не смешался с межзвёздным веществом. Опираясь на китайские летописи, данный взрыв был запечатлён в 1054 году. Но надо понимать, что расстояние до Крабовидной туманности составляет около 3300 световых лет.


Вот и всё. Всего 5 типов туманностей, которые вам нужно знать и уметь распознавать. Надеюсь, получилось донести до вас информацию в доступной форме и простым языком. Если есть вопросы — задавайте, пишите в комментарии. Спасибо.

Читайте также:

2i.by

Снимки галактик и туманностей с космического телескопа Хаббл

Благодаря автоматической обсерватории «Хаббл», находящейся на орбите вокруг Земли, мы можем видеть вселенную в инфракрасном диапазоне, недоступном с поверхности планеты.

Для проекта космического телескопа всегда было важно привлечь внимание и воображение широкой публики, и в особенности американских налогоплательщиков, внёсших наиболее значительный вклад в финансирование «Хаббла».

Одним из наиболее важных для связей с общественностью является проект «Наследие Хаббла» (англ. The Hubble Heritage). Его задачей является публикация наиболее эффектных визуально и эстетически изображений, полученных телескопом. Галереи проекта содержат не только оригинальные снимки, но и созданные на их основе коллажи и рисунки. Проекту выделено небольшое количество времени наблюдений для получения полноценных цветных изображений объектов, фотографирование которых в видимой части спектра не было необходимым для исследований.

 

NGC 6611 — Туманность Орла

 

Туманность Конская Голова

 

IC 5070 — Туманность Пеликан

 

NGC 224 — Туманность Андромеды

 

NGC 602 в Малом Магеллановом Облаке

 

Спиральная галактика NGC 1300

 

Спиральная галактика NGC 1309

 

Отражающая туманность NGC 2068

 

NGC 2207 и IC 2163 — Взаимодействующие спиральные галактики

 

Туманность Розетка NGC 2237

 

NGC 2264 — звёздное скопление Снежинка

 

NGC 2264 — Туманность Конус

 

NGC 2392 — Туманность Эскимос

 

NGC 2818 — Планетарная туманность

 

NGC 3034 — Взрывающаяся галактика (галактика сигара)

 

NGC 3370 — Спиральная галактика

 

NGC 3372 — Туманность Киль

 

NGC 3372 — Туманность у эты Киля

 

NGC 5194 — Галактика Водоворот с компаньоном

 

NGC 5457 — Галактика Цевочное Колесо

 

NGC 6514 — Трехраздельная туманность

 

NGC 6543 — Туманность Кошачий Глаз

 

NGC 6611 — Звездный шпиль в туманности Орла

 

NGC 6618 — Шторм из турбулентных газов в туманности Лебедя

 

NGC 6992 (Туманность Вуаль), NGC 6995 и NGC 6960 (Ведьмина метла)

 

NGC 7293 — Туманность Улитка

 

NGC 7635 — Туманность Пузырь

 

NGC1976 — Большая туманность Ориона

 

Большое Магелланово Облако (LMC)

 

Галактический кластер MS 0735

 

Огромное скопление далеких галактик

 

Зарождающиеся звёзды в туманности Ориона

 

Звезда V838 в Единороге

 

Взрыв звезды

 

Кольцо из голубых звёзд вокруг ядра галактики (объект Хога)

 

Молодые звёзды в Малом Магеллановом Облаке

 

Тёмная туманность Барнард 163

 

Три сталкивающихся галактики

 

Хаббл на орбите нашей планеты

animalworld.com.ua

Туманности

Смотрящие из глубин космоса загадочные объекты давным-давно привлекали интерес людей, наблюдающих за небом. Еще древнегреческий ученый Гиппарх в своем каталоге отметил наличие в ночном небе нескольких туманных объектов. Его коллега Птолемей пополнил список еще пятью туманностями. В XVII веке Галилей изобрел телескоп и с его помощью смог увидеть туманности Ориона и Андромеды. С тех пор по мере совершенствования телескопов и других приборов начались новые открытия в космическом пространстве. А туманности отнесли к отдельному классу звездных объектов.

Со временем известных туманностей стало очень много. Они начали мешать ученым и астрономам в поисках новых объектов. В конце XVIII века, изучая определенные объекты – кометы, Шарль Мессье составил «каталог диффузных неподвижных объектов», которые были похожи на кометы. Но из-за отсутствия достаточной технической поддержки в этот каталог вошли как туманности, так и галактики вместе с шаровыми звездными скоплениями.

Так же, как совершенствовались телескопы, развивалась и сама астрономия. Понятие «туманность» обретало все новые краски и постоянно уточнялось. Некоторые виды туманностей идентифицировали в звездные скопления, некоторые отнесли к поглощающим, а в 20-х годах прошлого века Хаббл смог установить природу туманностей и выделить области галактик.

Портал Kvant.Space расскажет о теориях возникновения туманностей, их примерном количестве, типах и удаленности от нашей планеты. Портал оперируется сугубо научно-проверенными фактами и самыми популярными идеями.

 

Классификация и типы туманностей на портале Kvant.Space

 

Первоначальный принцип, по которому квалифицируют туманности, заключается в поглощении или рассеивании (излучении) ими света. Данный критерий делит туманности на светлые и темные. Излучение светлых зависит от их происхождения. А источники энергии, которые возбуждают их излучение, зависят от собственной природы. Очень часто в туманности могут действовать не один, а два механизма излучения. Темные можно увидеть только благодаря поглощению расположенных за ними источников излучения.

Но если первый принцип классификации точный, то второй (деление туманностей на пылевые и газовые), является условным принципом. Каждая туманность содержит пыль и газ. Это деление обусловлено разными механизмами излучения и способами наблюдения. Наличие пыли лучше всего наблюдается при процессе поглощения излучения темными туманностями, которые размещены за источниками. Собственное излучение газовых компонентов туманности просматривается при ее ионизации ультрафиолетом или при нагревании межзвездной среды. Последний процесс возможен после удара в нее волны, которая образовалась после взрыва сверхновой звезды.

Темная туманность представлена в виде плотного, чаще всего молекулярного облака межзвездной пыли и газа. Поглощая свет, облако становится непрозрачным. Чаще всего темные туманности видны на фоне светлых. Крайне редко ученые замечают их на фоне Млечного Пути. Их называют гигантскими глобулами.

Поглощение света Av у темных колеблется в больших пределах. Может достигать показателей: от 1–10 m до 10–100 m. Строение туманностей с большим поглощением можно изучить только благодаря методам субмиллиметровой астрономии и радиоастрономии, при наблюдениях по инфракрасному излучению и по молекулярным радиолиниям. Часто в самой туманности обнаруживаются отдельные уплотнения, имеющие показатель Av до 10000 m. По теориям передовых астрофизиков там формируются звезды.

В полупрозрачных частях туманностей в оптическом диапазоне отлично видно волокнистую структуру. Общая вытянутость и волокна связаны с присутствием магнитных полей, которые затрудняют перемещение вещества поперек магнитогидродинамических неустойчивостей и силовых линий. Эта связь происходит из-за того, что пылинки заряжены электричеством.

Еще одним ярким типом туманностей является отражательная туманность. Это газово-пылевые облака, подсвеченные звездами. Если звезды расположены в межзвездном облаке или возле него, но не сильно горячи, чтобы уменьшить вокруг себя количество водорода, то главным источником оптического излучения самой туманности становится рассеиваемый межзвездной пылью свет звезд. Яркий пример подобного явления находится вокруг звезд Плеяды.

Большая часть отражательных туманностей находится поблизости плоскости Млечного Пути. В некоторых случаях наблюдается наличие таких туманностей на высоких галактических широтах. Эти молекулярные облака имеют разные размеры, форму, плотность и массу и подсвечиваются совместным излучением звезд Млечного Пути. Их трудно изучить, поскольку поверхностная яркость очень низкая. Иногда, появляясь на изображениях галактик, на фотографиях видны несуществующие детали – перемычки, хвосты и т. п.

Небольшая часть отражательных туманностей имеет кометообразный вид. Их называют кометарными. В заглавии такой туманности, как правило, находится переменная звезда по типу Тельца. Она освещает туманность. Они переменны в яркости и имеют маленькие размеры примерно сотые доли парсека.

 

Световое эхо – самая редкая разновидность отражательной туманности. Яркий пример – образовавшаяся вспышка Новой звезды в созвездии Персея. Эта вспышка подсветила пыль, в результате чего образовавшаяся туманность просматривалась несколько лет. И при этом в космосе она двигалась со скоростью света. Помимо светового эха после таких происшествий образуются газовые туманности.

Большинство отражательных туманностей располагает тонковолокнистой структурой, то есть системой практически параллельных волокон. Их толщина может достигать нескольких сотых долей парсека. Данные волокна происходят в результате проникания магнитным полем в желобковую неустойчивость туманности. Волокна пыли и газа раздвигают силовые линии в магнитном поле и просачиваются между ними.

Такие свойства пыли, как альбедо, форма, ориентация пылинок, индикатор рассеивания и размер дали ученым и астронавтам возможность изучить распределение поляризации света и его яркости по поверхности отражательных туманностей.

Ионизованные излучением туманности – это участки межзвездного газа, которые сильно ионизованы излучением звезд. Это излучение также может появляться и из других источников. Более всего подобные туманности изучаются в областях ионизованного водорода, как правило, это зона Н II. В таких зонах вещество полностью ионизовано. Его температура составляет около 104 К. Нагревается из-за внутреннего ультрафиолетового излучения. Внутри зон Н II звездное излучение в Лаймановском континууме превращается в субординантно-серийное излучение (соответствуя теореме Росселанда). Из-за этого в спектре туманностей находятся яркие линии серии Бельмера и линии Лайман-альфа.

К таким туманностям относятся также зоны ионизированного углерода – С II. Углерод в них полностью ионизован светом звезд. Зоны С II, как правило, расположены вокруг зон Н II. Они получаются из-за низкого потенциала ионизации углерода в сравнении с водородом. Также они могут образоваться вокруг звезд с высоким спектральным классом в плотностях межзвездной среды. Ионизованные излучением туманности возникают еще вокруг сильных рентгеновских источников. У них более высокие температуры, нежели в зонах Н II, и сравнительно большая степень ионизации.

Самой распространенной разновидностью эмиссионных туманностей считаются планетарные туманности. Они созданы истекающими верхними слоями атмосфер звезд. Такая туманность светится и расширяется в оптическом диапазоне. Впервые их открыл в XVII веке Гершель и именовал их так из-за внешнего сходства с дисками планет. Но не все планетарные туманности представляют форму диска, некоторые имеют округлую форму кольца. Внутри таких туманностей наблюдается тонкого типа структура в виде спиралей, струй и мелких глобул. Такие туманности расширяются со скоростью 20 км/с, а масса их равна 0,1 массы Солнца. Живут они около 10 тысяч лет.

Портал Kvant.Space подает только проверенную и свежую информацию. Мы перенесем Вас в таинственный мир космоса. И благодаря астрономам и астрофизикам туманности уже не являются такой огромной загадкой, как были ранее.

Помимо обычных, долгоживущих, туманных образований существуют кратковременные, созданные ударными волнами. Они исчезают тогда, когда исчезает кинетическая энергия движущегося газа. Существует несколько источников для возникновения таких ударных волн. Чаще всего – это результат взрыва звезды. Реже – звездный ветер, вспышки новых и сверхновых звезд. В любом случае присутствует один источник выброса подобного вещества – звезда. Туманности такого происхождения имеют форму расширяющейся оболочки или форму сферы. Вещество, которое выбросилось в результате взрыва, может иметь различные скорости от сотен до тысяч км/с, из-за этого температура газа за ударной волной достигает не миллионов, а миллиардов градусов.

Нагретый до огромных температур газ излучается в рентгеновском диапазоне как в спектральных линиях, так и в непрерывном спектре. В спектральных оптических линиях он слабо светится. При встрече с неоднородностью межзвездной среды ударная волна огибает уплотнения. Внутри самого уплотнения распространяется собственная ударная волна. Она же вызывает излучение в линиях спектра оптического диапазона. В результате создаются яркие волокна, которые отлично просматриваются на фотографиях.

Самые яркие туманности, возникшие после ударных волн, созданы взрывами сверхновых звезд. Их называют остатками вспышек звезд. Они играют далеко не последнюю роль в формировании формы межзвездного газа. Они характеризуются малогабаритностью, слабостью и недолговечностью.

 

Существует еще один тип туманностей. Этот тип также создан впоследствии возникновения ударной волны. Но основная причина заключается в звездном ветре от звезд Вольфа – Райе. Звезды Вольфа имеют довольно мощный ветровой поток массы и скорость истечения. Они образуют туманности средних размеров с очень яркими волокнами. Сравнивая их с остатками вспышек сверхновых звезд, ученные утверждают, что радиоизлучение таких туманностей обладает тепловой природой. Туманности, которые расположены вокруг звезд Вольфа, живут недолго. Их существование напрямую зависит от продолжительности присутствия звезды в стадии звезды Вольфа – Райе.

Абсолютно аналогичные туманности находятся вокруг О-звезд. Это очень яркие горячие звезды, которые относятся к спектральному классу О. Они обладают сильным звездным ветром. В отличие от туманностей, расположенных вокруг звезд Вольфа – Райе, туманности О-звезд менее яркие, но имеют намного большие размеры и продолжительность существования.

Самые распространенные туманности находятся в областях звездообразования. Мало-скоростные ударные волны создаются в областях межзвездной среды. Именно в них происходит звездообразование. Такой процесс влечет за собой нагрев газа до сотен и даже тысяч градусов, частичное разрушение молекул, нагрев самой пыли, возбуждение молекулярных уровней. Подобные ударные волны имеют вид вытянутых туманностей и, как правило, светятся в инфракрасном диапазоне. Яркий пример подобного явления просматривается в созвездии Ориона.

kvant.space

Галактики и туманности | Интересные Факты

Ранее любой неподвижный объект на небе, отличающийся от звезды, называли туманностью.

Но лет 90 назад астрономы, вооружившись более совершенными оптическими телескопами, выяснили, что и знаменитая Туманность Андромеды, и многие другие туманности на самом деле являются галактиками.

Сегодня под туманностью подразумевают участок космического пространства, выделяющийся на общем небесном фоне поглощением света или его рассеиванием. Некоторые из туманностей излучают сами.

Мы можем увидеть туманности невооруженным глазом, если ясной звездной ночью (желательно подальше от освещенных населенных пунктов) взглянем на простершийся по небу Млечный Путь — видимую с Земли часть нашей Галактики.

«Дыры» в Млечном Пути — это и есть туманности, облака из газа и пыли, частично закрывающие от нас галактическое великолепие. Они же скрывают центр Галактики, который, не будь туманностей, светил бы на ночном небе ярче Луны!

Во Вселенной летят гигантские звездные острова — галактики, в одной из которых, названной Млечный Путь, живем и мы, земляне.

Последние данные, полученные с космического телескопа «Хаббл», позволяют предположить, что в той части Вселенной, которую мы наблюдаем, существует порядка ста миллиардов галактик.

Каждая из галактик состоит из миллиардов звезд, звездных скоплений, межзвездной пыли, газа и темной материи, связанных воедино гравитацией. Возраст самых старых из галактик приближается к возрасту нашей Вселенной.

У галактики Млечный Путь есть две карликовые галактики-спутника — Большое и Малое Магеллановы Облака. Большое Магелланово Облако — ближайшая к Земле галактика. Но она очень далека: полет к ней со скоростью света продлится 163 тысячи лет.

1001fact.ru

ближайшая галактика к Млечному Пути

Космос — это сложно устроенная система, элементы которой находятся в тесной взаимосвязи: планеты объединяются вокруг одной звезды, звезды образуют галактики, а те складываются в еще более крупные ассоциации, как, например, Местная группа галактик. Кратность — очень распространенное явление во Вселенной, связанное с высокой гравитацией. Благодаря ей образуется центр масс, вокруг которого вращаются как сравнительно небольшие объекты вроде звезд, так и галактики и их ассоциации.

Состав группы

Считается, что основой Местной группы являются три крупных объекта: Млечный Путь, Туманность Андромеды и галактика Треугольника. Гравитационным притяжением с ними связаны их спутники, а также ряд карликовых галактик, принадлежность которых к одной из трех систем пока невозможно установить. Всего же в Местную группу галактик входит не менее пятидесяти крупных небесных объектов, и с повышением качества техники для астрономических наблюдений это число растет.

Сверхскопление Девы

Как уже говорилось, кратность в масштабах Вселенной — явление обыденное. Местная группа галактик не является наиболее крупным из таких объединений, хотя ее размер впечатляет: в поперечнике она занимает расстояние около одного мегапарсека (3,8 × 1019 км). Наряду с другими подобными ассоциациями, Местная группа входит в сверхскопление Девы. Его размеры трудно себе представить, зато относительно точно измерена масса: 2 × 1045 кг. Всего же в это объединение входит около сотни галактических систем.

Следует отметить, что на этом кратность не заканчивается. Сверхскопление Девы, как и несколько других, образуют так называемую Ланиакею. Изучение таких гигантских систем позволило астрофизикам создать теорию крупномасштабной структуры Вселенной.

Типы галактик, образующих Местную группу

Учеными установлено, что возраст всех членов Местной группы составляет приблизительно 13 млрд лет. Кроме того, образующее их вещество имеет одинаковый состав, что позволяет говорить об общем происхождении галактик Местной группы. Располагаются они не в произвольном порядке: большая их часть выстроена вокруг воображаемой линии, которая пролегает между Млечным Путем и Туманностью Андромеды.

Крупнейшим членом Местной группы галактик по размеру является Туманность Андромеды: ее диаметр составляет 260 тысяч световых лет (2,5 × 1018 км). По массе же явно выделяется Млечный Путь — приблизительно 6 × 1042 кг. Наряду с такими крупными объектами встречаются и карликовые объекты вроде галактики SagDEG, находящейся в созвездии Стрельца.

Большая часть галактик Местной группы относится к категории неправильных, однако есть и спиральные вроде Туманности Андромеды и эллиптические, как уже упомянутая SagDEG.

Подгруппа Млечного Пути

Точность астрономических наблюдений за Местной группой зависит от того, в какой галактике мы находимся. Именно поэтому Млечный Путь является, с одной стороны, наиболее изученным объектом, а с другой — вызывает наибольшее количество вопросов. На сегодняшний день установлено, что спутниками нашей галактики является как минимум 14 объектов, в числе которых можно назвать галактики Большой Медведицы, Стрельца, Скульптора и Льва.

Особенно следует отметить галактику SagDEG в Стрельце. Она является наиболее удаленной от гравитационного центра Местной группы. Согласно подсчетам, Землю от этой галактики отделяет 3,2 × 1019 км.

Млечный Путь и Магеллановы Облака

К числу дискуссионных относится вопрос о связи Млечного Пути с Магеллановыми Облаками — настолько близкими к нам двумя галактиками, что их можно невооруженным глазом наблюдать из Южного полушария. Долгое время считалось, что они являются спутниками нашей галактики. В 2006 году при использовании новейших технологий было установлено, что они движутся гораздо быстрее других спутников Млечного Пути. Исходя из этого и было выдвинуто предположение, что гравитационной связи с нашей галактикой они не имеют.

Зато бесспорной является дальнейшая судьба Магеллановых Облаков. Их движение направлено в сторону Млечного Пути, поэтому их поглощение более крупной галактикой неизбежно. По оценкам ученых, это случится спустя 4 миллиарда лет.

Туманность Андромеды и ее спутники

Через 5 миллиардов лет похожая участь грозит и нашей галактике, только угрозу ей представляет Андромеда — крупнейшая галактика Местной группы. Расстояние до галактики Андромеда составляет 2,5 × 106 световых лет. Она имеет 18 спутников, из которых, благодаря своей яркости, наиболее известны М23 и М110 (номера по каталогу французского астронома XVIII века Шарля Мессье).

Хотя Туманность Андромеды — ближайшая галактика к Млечному Пути, наблюдение за нею сильно усложнено из-за ее структуры. Она относится к числу спиралевидных галактик: имеет ярко выраженный центр, из которого выходят два крупных спиральных рукава. Однако Туманность Андромеды повернута к Земле ребром.

Галактика Треугольника

Значительная ее удаленность от Земли существенно затрудняет изучение как самой галактики, так и ее спутников. Количество спутников галактики Треугольника является спорным. Например, карликовая Андромеда II находится точно посреди между Треугольником и Туманностью. Состояние современных наблюдательных аппаратов не позволяет определить, к гравитационному полю которого из двух крупнейших членов Местной группы галактик относится этот космический объект. Большинство все же предполагает, что Андромеда II связана с Треугольником. Но есть и представители противоположной точки зрения, которые предлагают даже переименовать ее в Андромеду XXII.

В галактике Треугольника также имеется один из экзотических объектов Вселенной — черная дыра M33 X-7, чья масса превышает солнечную в 16 раз, что делает ее одной из наиболее крупных известных современной науке черных дыр, исключая сверхмассивные.

Проблема шаровых скоплений

Число членов Местной группы постоянно варьируется не только из-за открытия других галактик, вращающихся вокруг того же центра массы. Повышение качества астрономической техники позволило установить, что объекты, ранее считавшиеся галактиками, на самом деле ими не являются.

В большей степени это касается шаровых звездных скоплений. Они содержат большое количество звезд, привязанных к одному гравитационному центру, а своей формой напоминают сферические галактики. Различать их помогают количественные отношения: плотность звезд в шаровых скоплениях гораздо выше, а диаметр, соответственно, выше. Для сравнения: в окрестности Солнца на 10 кубических парсеков приходится одна звезда, в то время как в шаровых скоплениях этот показатель может быть в 700 и даже в 7000 раз выше.

Карликовыми галактикам долгое время считались Palomar 12 в созвездии Козерога и Palomar 4 в Большой Медведице. Недавние исследования показали, что на самом деле они являются достаточно крупными шаровыми скоплениями.

История и трудности изучения Местной группы галактик

Вплоть до второй четверти XX века считалось, что Млечный Путь и Вселенная — понятия тождественные. Все вещество якобы находится в пределах нашей галактики. Однако в 1924 году Эдвин Хаббл с помощью своего телескопа зафиксировал несколько цефеид — переменных звезд с ярко выраженным периодом светимости — расстояние до которых явно превышало размеры Млечного Пути. Тем самым было доказано существование внегалактических объектов. Учены задумались над тем, что Вселенная устроена сложнее, чем это казалось раньше.

Своим открытием Хаббл также доказал, что Вселенная все время расширяется, а объекты удаляются друг от друга. Совершенствование техники приносило новые открытия. Так было обнаружено, что у Млечного Пути есть свои спутники, между ними были высчитаны расстояния и определены перспективы существования. Таких открытий оказалось достаточно, чтобы впервые сформулировать идею существования Местной группы как внушительной ассоциации тесно связанных между собой галактик и даже предположить, что могут существовать объединения более высокого ранга, поскольку спутники были обнаружены и у ближайшей к Млечному Пути галактики — Туманности Андромеды. Сам термин «Местная группа» впервые был употреблен тем же Хабблом. Он упоминает его в своем труде по измерению расстояний до других галактик.

Можно утверждать, что изучение Космоса только началось. Касается это и Местной группы. Галактика SagDEG была обнаружена сравнительно недавно, но причина этому не только ее низкая светимость, которая долгое время не регистрировалась телескопами, но и наличие во Вселенной вещества, не имеющего видимого излучения — так называемой «темной материи».

Кроме того, наблюдения осложняют рассеянный межзвездный газ (как правило, водород) и космическая пыль. Однако наблюдательная техника не стоит на месте, что позволяет рассчитывать на новые удивительные открытия в будущем, а также на уточнение уже существующей информации.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *