Как летают баллистические ракеты – Межконтинентальная баллистическая ракета — Википедия

Содержание

БПЛА | Журнал Популярная Механика

Межконтинентальная баллистическая ракета — весьма впечатляющее творение человека. Огромные размеры, термоядерная мощь, столб пламени, рев двигателей и грозный рокот пуска… Однако все это существует лишь на земле и в первые минуты запуска. По их истечении ракета прекращает существовать. Дальше в полет и на выполнение боевой задачи уходит лишь то, что остается от ракеты после разгона — ее полезная нагрузка.

При больших дальностях пуска полезная нагрузка межконтинентальной баллистической ракеты уходит в космическую высоту на многие сотни километров. Поднимается в слой низкоорбитальных спутников, на 1000−1200 км над Землей, и ненадолго располагается среди них, лишь слегка отставая от их общего бега. А затем по эллиптической траектории начинает скатываться вниз…

Что это, собственно, за нагрузка?

Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.

Головная часть ракеты — это сложный груз из многих элементов. Он содержит боеголовку (одну или несколько), платформу, на которой эти боеголовки размещены вместе со всем остальным хозяйством (вроде средств обмана радаров и противоракет противника), и обтекатель. Еще в головной части есть топливо и сжатые газы. Вся головная часть к цели не полетит. Она, как ранее и сама баллистическая ракета, разделится на много элементов и просто перестанет существовать как одно целое. Обтекатель от нее отделится еще неподалеку от района пуска, при работе второй ступени, и где-то там по дороге и упадет. Платформа развалится при входе в воздух района падения. Сквозь атмосферу до цели дойдут элементы только одного типа. Боеголовки. Вблизи боеголовка выглядит как вытянутый конус длиною метр или полтора, в основании толщиной с туловище человека. Нос конуса заостренный либо немного затупленный. Конус этот — специальный летательный аппарат, задача которого — доставка оружия к цели. Мы вернемся к боеголовкам позже и познакомимся с ними ближе.

Тянуть или толкать?

В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.

Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых больших секретов в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.

Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в разные стороны, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.

На снимках — ступени разведения американской тяжелой МБР LGM0118A Peacekeeper, также известной как MX. Ракета была оснащена десятью разделяющимися боеголовками по 300 кт. Ракета снята с вооружения в 2005 году.

Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.

Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.

К-551 «Владимир Мономах» — российская атомная подводная лодка стратегического назначения (проект 955 «Борей»), вооруженная 16 твердотопливными МБР «Булава» с десятью разделяющимися боевыми блоками.

Деликатные движения

Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?

Подводные лодки проекта 955 «Борей» — серия российских атомных подводных лодок класса «ракетный подводный крейсер стратегического назначения» четвертого поколения. Первоначально проект создавался под ракету «Барк», ей на смену пришла «Булава».

Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как обручальное кольцо на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.

Ступень нежно, как мать от колыбельки уснувшего дитяти, боясь нарушить его покой, на цыпочках отходит в пространстве на трех оставшихся соплах в режиме малой тяги, а боеголовка остается на прицельной траектории. Затем «бублик» ступени с крестовиной тяговых сопел проворачивается вокруг оси, чтобы боеголовка вышла из-под зоны факела выключенного сопла. Теперь ступень отходит от оставляемой боеголовки уже на всех четырех соплах, но пока тоже на малом газу. При достижении достаточного расстояния включается основная тяга, и ступень энергично перемещается в область прицельной траектории следующей боеголовки. Там расчетно тормозится и снова очень точно устанавливает параметры своего движения, после чего отделяет от себя очередную боеголовку. И так — пока не высадит каждую боеголовку на ее траекторию. Процесс этот быстр, гораздо быстрее, чем вы читаете о нем. За полторы-две минуты боевая ступень разводит десяток боеголовок.

Американские подводные лодки класса «Огайо» — единственный тип ракетоносцев, находящийся на вооружении США. Несет на борту 24 баллистических ракеты с РГЧ Trident-II (D5). Количество боевых блоков (в зависимости от мощности) — 8 или 16.

Бездны математики

Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.

Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.

В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще… но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.

Полезная нагрузка межконтинентальной баллистической ракеты большую часть полета проводит в режиме космического объекта, поднимаясь на высоту, в три раза больше высоты МКС. Огромной длины траектория должна быть просчитана с особой точностью.

Полет без боеголовок

Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь. Недолгую, но насыщенную.

После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в космическом солнце ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные, надувные шарики, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».

Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.

Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой?

На фото — пуск межконтинентальной ракеты Trident II (США) с подводной лодки. В настоящий момент Trident («Трезубец») — единственное семейство МБР, ракеты которого устанавливаются на американских подводных лодках. Максимальный забрасываемый вес — 2800 кг.

Последний отрезок

Однако с точки зрения аэродинамики ступень не боеголовка. Если та — маленькая и тяжеленькая узкая морковка, то ступень — пустое обширное ведро, с гулкими опустевшими топливными баками, большим необтекаемым корпусом и отсутствием ориентации в начинающем набегать потоке. Своим широким телом с приличной парусностью ступень гораздо раньше отзывается на первые дуновения встречного потока. Боеголовки к тому же разворачиваются вдоль потока, с наименьшим аэродинамическим сопротивлением пробивая атмосферу. Ступень же наваливается на воздух своими обширными боками и днищами как придется. Бороться с тормозящей силой потока она не может. Ее баллистический коэффициент — «сплав» массивности и компактности — гораздо хуже боеголовочного. Сразу и сильно начинает она замедляться и отставать от боеголовок. Но силы потока нарастают неумолимо, одновременно и температура прогревает тонкий незащищенный металл, лишая его прочности. Остатки топлива весело кипят в раскаляющихся баках. Наконец, происходит потеря устойчивости конструкции корпуса под обжавшей ее аэродинамической нагрузкой. Перегрузка помогает крушить переборки внутри. Крак! Хрясь! Смявшееся тело тут же охватывают гиперзвуковые ударные волны, разрывая ступень на части и разбрасывая их. Пролетев немного в уплотняющемся воздухе, куски снова разламываются на более мелкие фрагменты. Остатки топлива реагируют мгновенно. Разлетающиеся осколки конструктивных элементов из магниевых сплавов зажигаются раскаленным воздухом и мгновенно сгорают с ослепительной вспышкой, похожей на вспышку фотоаппарата — недаром в первых фотовспышках поджигали магний!

Все сейчас горит огнем, все обтянуто раскаленной плазмой и хорошо светит вокруг оранжевым цветом углей из костра. Более плотные части уходят тормозиться вперед, более легкие и парусные сдуваются в хвост, растягивающийся по небу. Все горящие компоненты дают плотные дымовые шлейфы, хотя на таких скоростях этих самых плотных шлейфов быть не может из-за чудовищного разбавления потоком. Но издали их видно прекрасно. Выброшенные частицы дыма растягиваются по следу полета этого каравана кусков и кусочков, наполняя атмосферу широким белым следом. Ударная ионизация порождает ночное зеленоватое свечение этого шлейфа. Из-за неправильной формы фрагментов их торможение стремительно: все, что не сгорело, быстро теряет скорость, а с ней и горячительное действие воздуха. Сверхзвук — сильнейший тормоз! Став в небе, словно разваливающийся на путях поезд, и тут же охладившись высотным морозным дозвуком, полоса фрагментов становится визуально неразличимой, теряет свою форму и строй и переходит в долгое, минут на двадцать, тихое хаотичное рассеивание в воздухе. Если оказаться в нужном месте, можно услышать, как тихо звякнет об ствол березы маленький обгорелый кусочек дюраля. Вот ты и прибыла. Прощай, ступень разведения!

Статья «Космический автобус» опубликована в журнале «Популярная механика» (№4, Апрель 2016).

www.popmech.ru

Что такое баллистическая траектория ракеты, пули? :: SYL.ru

Путь движения тела (например, бомбы, ракеты, летательного аппарата), в котором отсутствует тяга либо управляющая сила и момент, называется баллистической траекторией. Если механизм, приводящий в действие объект, остается рабочим на протяжении всего времени передвижения – он относится к ряду авиационных либо динамических. Траекторию самолета во время полета с выключенными двигателями на большой высоте также можно назвать баллистической.

На объект, который передвигается по заданным координатам, действует лишь механизм, приводящий тело в действие, силы сопротивления и тяжести. Набор таких факторов исключает появление возможности к прямолинейному движению. Данное правило работает даже в космосе.

Тело описывает траекторию, которая подобна эллипсу, гиперболе, параболе либо окружности. Последние два варианта достигаются при второй и первой космических скоростях. Расчеты для движения по параболе или окружности проводятся для определения траектории баллистической ракеты.

Учитывая все параметры при запуске и полете (массу, скорость, температуру и т. д.), выделяют следующие особенности траектории:

  • Для того чтобы запустить ракету как можно дальше необходимо подобрать правильный угол. Наилучшим является острый, около 45º.
  • Объект имеет одинаковую начальную и конечную скорости.
  • Тело приземляется под таким же углом, как и запускается.
  • Время движения объекта от старта и до середины, а также от середины до финишной точки является одинаковым.

Свойства траектории и практические значения

Движение тела после прекращения влияния на него движущей силы изучает внешняя баллистика. Данная наука предоставляет расчеты, таблицы, шкалы, прицелы и вырабатывает оптимальные варианты для стрельбы. Баллистическая траектория пули – это кривая линия, которую описывает центр тяжести объекта, находящегося в полете.

Так как на тело влияют сила тяжести и сопротивления, путь, который описывает пуля (снаряд), образует форму кривой линии. Под действием приведенных сил скорость и высота объекта постепенно снижается. Различают несколько траекторий: настильную, навесную и сопряженную.

Первая достигается при использовании угла возвышения, который является меньшим, нежели угол наибольшей дальности. Если при разных траекториях дальность полета остается одинаковой – такую траекторию можно назвать сопряженной. В случае, когда угол возвышения больше, чем угол наибольшей дальности, путь приобретает название навесного.

Траектория баллистического движения объекта (пули, снаряда) состоит из точек и участков:

  • Вылета (например, дульный срез ствола) – данная точка является началом пути, и, соответственно, отсчета.
  • Горизонта оружия – этот участок проходит через точку вылета. Траектория пересекает ее дважды: при выпуске и падении.
  • Участка возвышения – это линия, которая является продолжением горизонта образует вертикальную плоскость. Данный участок носит название плоскости стрельбы.
  • Вершины траектории – это точка, которая находится посредине между начальной и конечной точками (выстрела и падения), имеет наивысший угол на протяжении всего пути.
  • Наводки – мишень или место прицела и начало движения объекта образуют линию прицеливания. Между горизонтом оружия и конечной целью формируется угол прицеливания.

Ракеты: особенности запуска и движения

Различают управляемые и неуправляемые баллистические ракеты. На формирование траектории также влияют внешние и наружные факторы (силы сопротивления, трения, вес, температура, требуемая дальность полета и т.д).

Общий путь запущенного тела можно описать следующими этапами:

  • Запуск. При этом ракета переходит в первую стадию и начинает свое движение. С этого момента и начинается измерение высоты траектории полета баллистической ракеты.
  • Приблизительно через минуту запускается второй двигатель.
  • Через 60 секунд после второго этапа запускается третий двигатель.
  • Далее тело входит в атмосферу.
  • В последнюю очередь происходит взрыв боевых головок.

Запуск ракеты и формирование кривой передвижения

Кривая передвижения ракеты состоит из трех частей: периода запуска, свободного полета и повторного входа в земную атмосферу.

Боевые снаряды запускаются с фиксированной точки переносных установок, а также транспортных средств (судов, субмарин). Приведение в полет продолжается от десятых тысячных секунд до нескольких минут. Свободное падение составляет наибольшую часть траектории полета баллистической ракеты.

Преимуществами запуска такого приспособления являются:

  • Продолжительное время свободного полета. Благодаря этому свойству существенно уменьшается расход топлива в сравнении с другими ракетами. Для полета прототипов (крылатых ракет) используются более экономичные двигатели (например, реактивные).
  • На скорости, с которой движется межконтинентальная орудие (примерно 5 тыс. м/с), перехват дается с большой сложностью.
  • Баллистическая ракета в состоянии поразить цель на расстоянии до 10 тыс. км.

В теории путь передвижения снаряда – это явление из общей теории физики, раздела динамики твердых тел в движении. Относительно данных объектов рассматривается передвижение центра масс и движение вокруг него. Первое относится к характеристике объекта, совершающего полет, второе – к устойчивости и управлению.

Так как тело имеет программные траектории для совершения полета, расчет баллистической траектории ракеты определяется физическими и динамическими расчетами.

Современные разработки в баллистике

Поскольку боевые ракеты любого вида являются опасными для жизнедеятельности, главной задачей обороны является усовершенствование точек для запуска поражающих систем. Последние должны обеспечить полную нейтрализацию межконтинентального и баллистического оружия в любой точке движения. К рассмотрению предложена многоярусная система:

  • Данное изобретение состоит из отдельных ярусов, каждый из которых имеет свое назначение: первые два будут оснащены оружием лазерного типа (самонаводящиеся ракеты, электромагнитные пушки).
  • Следующих два участка оснащаются тем же оружием, но предназначенного для поражения головных частей оружия противника.

Разработки в оборонном ракетостроении не стоят на месте. Ученные занимаются модернизацией квазибаллистической ракеты. Последняя представлена как объект, имеющий низкий путь в атмосфере, но при этом резко изменяющий направление и диапазон.

Баллистическая траектория такой ракеты не влияет на скорость: даже на предельно низкой высоте объект передвигается быстрее, нежели обычный. Например, разработка РФ «Искандер» летит на сверхзвуковой скорости – от 2100 до 2600 м/с при массе 4 кг 615 г, круизы ракеты передвигают боеголовку весом до 800 кг. При полете маневрирует и уклоняется от противоракетной обороны.

Межконтинентальное оружие: теория управления и составляющие

Многоступенчатые баллистические ракеты носят название межконтинентальных. Такое название появилось неспроста: из-за большой дальности полета становится возможным перебросить груз на другой конец Земли. Основным боевым веществом (зарядом), в основном, является атомное либо термоядерное вещество. Последнее размещается в передней части снаряда.

Далее в конструкции устанавливается система управления, двигатели и баки с топливом. Габариты и масса зависят от требуемой дальности полета: чем больше расстояние, тем выше стартовый вес и габариты конструкции.

Баллистическую траекторию полета МБР отличают от траектории иных ракет по высоте. Многоступенчатая ракета проходит процесс запуска, затем на протяжении нескольких секунд движется вверх под прямым углом. Системой управления обеспечивается направления орудия в сторону цели. Первая ступень привода ракеты после полного выгорания самостоятельно отделяется, в этот же момент запускается следующая. При достижении заданной скорости и высоты полета ракета начинает стремительно двигаться вниз к цели. Скорость полета к объекту назначения достигает 25 тыс. км/ч.

Мировые разработки ракет специального назначения

Около 20 лет назад в ходе модернизации одного из ракетных комплексов средней дальности был принят проект противокорабельных баллистических ракет. Такая конструкция размещается на автономной пусковой платформе. Вес снаряда составляет 15 тонн, а дальность пуска – почти 1,5 км.

Траектория баллистической ракеты для уничтожения кораблей не поддается для быстрых расчетов, поэтому предугадать действия противника и устранить данное орудие невозможно.

Такая разработка имеет преимущества:

  • Дальность пуска. Эта величина в 2-3 раза больше, нежели у прототипов.
  • Скорость и высота полета делают боевое оружие неуязвимым для противоракетной обороны.

Мировые специалисты уверены в том, что оружие массового поражения все-таки можно обнаружить и нейтрализовать. Для таких целей используются специальные разведывательные заорбитные станции, авиацию, подводные лодки, корабли и др. Самым главным «противодействием» является космическая разведка, которая представлена в виде радиолокационных станций.

Баллистическая траектория определяется системой разведки. Полученные данные передаются по месту назначения. Основной проблемой является быстрое устаревание информации – за короткий период времени данные теряют свою актуальность и могут расходиться с настоящим местом нахождения оружия на расстояние до 50 км.

Характеристики боевых комплексов отечественной оборонной промышленности

Наиболее мощным оружием нынешнего времени считается межконтинентальная баллистическая ракета, которая размещается стационарно. Отечественный ракетный комплекс «Р-36М2» является одним из наилучших. На нем размещается сверхпрочное боевое орудие «15А18М», которое способно нести до 36 ядерных снарядов индивидуального точного наведения.

Баллистическую траекторию полета такого оружия практически невозможно предугадать, соответственно, нейтрализация ракеты также предоставляет сложности. Боевая мощность снаряда составляет 20 Мт. Если данный боеприпас взорвется на низкой высоте – системы связи, управления, противоракетной обороны выйдут из строя.

Модификации приведенной ракетной установки можно использовать и в мирных целях.

Среди твердотопливных ракет особенно мощной считается «РТ-23 УТТХ». Такое приспособление базируется автономно (мобильно). В стационарной станции-прототипе («15Ж60») стартовая тяга выше на 0,3, в сравнении с мобильной версией.

Запуск ракет, который проводится непосредственно со станций сложно нейтрализовать, ведь количество снарядов может достигать 92 единиц.

Ракетные комплексы и установки заграничной оборонной промышленности

Высота баллистической траектории ракеты американского комплекса «Минитмен-3» не особо отличается от характеристик полета отечественных изобретений.

Комплекс, который разработан в США, является единственным «защитником» Северной Америки среди оружия такого вида до сегодняшнего дня. Несмотря на давность изобретения, показатели устойчивости орудия являются неплохими и в нынешнее время, ведь ракеты комплекса могли противостоять противоракетной обороне, а также поразить цель с высоким уровнем защиты. Активный участок полета непродолжительный, и составляет 160 с.

Другое изобретение американцев – «Пискипер». Он также мог обеспечить точное попадание в цель благодаря наивыгоднейшей траектории баллистического движения. Специалисты утверждают, что боевые возможности приведенного комплекса почти в 8 раз выше, нежели у «Минитмена». Боевое дежурство «Пискипера» составляло 30 секунд.

Полет снаряда и движение в атмосфере

Из раздела динамики известно влияние плотности воздуха на скорость передвижения любого тела в различных слоях атмосферы. Функция последнего параметра учитывает зависимость плотности непосредственно от высоты полета и выражается в зависимости:

Н(у)=20000-у/20000+у;

где у – высота полета снаряда (м).

Расчет параметров, а также траектории межконтинентальной баллистической ракеты можно производить с помощью специальных программ на ЭВМ. Последние приведут ведомости, а также данные о высоте полета, скорости и ускорении, продолжительности каждого этапа.

Экспериментальная часть подтверждает расчетные характеристики, и доказывает, что на скорость оказывает влияние форма снаряда (чем лучше обтекаемость, тем выше скорость).

Управляемое оружие массового поражения прошлого века

Все оружие приведенного типа можно разделить на две группы: наземное и авиационное. Наземным называется такие приспособления, запуск которых осуществляется со стационарных станций (например, шахт). Авиационное, соответственно, запускается с корабля-носителя (самолета).

К группе наземных относятся баллистические, крылатые и зенитные ракеты. К авиационным – самолеты-снаряды, АБР и управляемые снаряды воздушного боя.

Основной характеристикой расчета баллистической траектории движения является высота (несколько тысяч километров над слоем атмосферы). При заданном уровне над уровнем Земли снаряды достигают высоких скоростей и создают огромные сложности для их выявления и нейтрализации ПРО.

Известными БР, которые рассчитаны на среднюю дальность полета, являются: «Титан», «Тор», «Юпитер», «Атлас» и др.

Баллистическая траектория ракеты, которая запускается из точки и попадает по заданным координатам, имеет форму эллипса. Размер и протяженность дуги зависит от начальных параметров: скорости, угла запуска, массы. Если скорость снаряда приравнивается к первой космической (8 км/с), боевое орудие, которое запущено параллельно к горизонту, превратится в спутник планеты с круговой орбитой.

Несмотря на постоянное усовершенствование в области обороны, путь полета боевого снаряда практически не изменяется. На текущий момент технологии не в состоянии нарушить законы физики, которым подчиняются все тела. Небольшим исключением являются ракеты с самонаведением – они могут менять направление в зависимости от перемещения цели.

Изобретатели противоракетных комплексов также модернизируют и разрабатывают орудие для уничтожения средств массового поражения нового поколения.

www.syl.ru

Как летают ракеты — Тупое быдло

Я тут просмотрел историю сообщества, и с ужасом выяснил, что заявленный мною еще в 2006 г. доклад о ракетах был мною написан, но… не опубликован!!! Точнее, некоторые части его всплыли у меня в журнале, в комментах, но… Во исправление своей забывчивости и в дополнение к докладу уважаемого коллеги n_sandro помещаю здесь расширенный и доработанный материал.

Для начала пару слов о возникщем с n_sandro терминологическом споре.

Хотя в массовом сознании понятие «баллистическая ракета» связано в основном с теми многотонными межконтинентальными дурами, которыми мы грозим американцам (а они нам), на самом деле оно никак не связано с дальностью полета. Это всего лишь ракета, которая летит по баллистической траектории, т.е., попросту говоря, как кинутый камень. Снаряды гвардейского миномета «Катюша», арабские «Касамы» и т.д. — тоже баллистические ракеты, равно как и прочие многочисленные боевые ракеты малой и средней дальности. Выстрелили, быстренько движок отработал — летим камнем (можем при этом боеголовку отделить, а можем и не отделять).

Типичная зенитная или противотанковая ракета — другое дело: их двигатель работает практически все время до попадания в цель, благодаря чему они могут выписывать по дороге всякие выкрутасы, баллистической ракете практически недоступные. Именно поэтому в названиях ракет подобного типа есть слово «управляемые» — ЗУР, ПТУР и т.п. Среди управляемых ракет особо можно выделить крылатые, это, грубо, такой беспилотный одноразовый самолет, который держится в воздухе не за счет того, что им «стрельнули», а на подъемной силе крыльев, и активно управляется за счет взаимодействия с окружающей средой (отклонением аэродинамических рулей).

А если быть совсем точным, то как раз современные межконтинентальные баллистические ракеты в большинстве своем тоже не совсем баллистические, т.к. часто имеют управляемые участки на середине или в конце траектории. В общем, термин «баллистическая ракета» получается достаточно условный, так что не стоит особо на него заморачиваться.

Важно, что на практике и космическая, и «военная» баллистическая — это абсолютно одинаковые ракеты и задачи они решают одинаковые: разогнать полезный груз (спутник или ядерное взрывное устройство) что есть мочи, и бросить его, после чего груз летит самостоятельно — по баллистической траектории. Собственно говоря, и ракеты эти изначально — одни и те же. Космические — всего лишь незначительные модификации боевых, чисто космических ракет — раз-два, и обчелся (навскидку из активно летающих вспоминается, ну, разве что европейский «Ариан» и специальные носители типа «Шаттла» и нашей «Энергии», да и они по схеме полета от всех остальных мало отличаются. UPD: О, еще «Зенит» забыл, стыжусь).

С окружающим миром большинство таких ракет связи вообще не имеет никакой. Слепа, глуха. Единственное, что у ракеты есть — это орган равновесия, или, по-научному, «автономная инерциальная система». Боеголовка (или спутник) — другой вопрос. Но это не ракета, это полезная нагрузка. Так что голливудщина про перенацеливаемые и разворачивающиеся в полете МБР — это сказки похлеще гонконгких кун-фу боевиков. Последние модели, конечно, малость поумнели, но все равно искать сложный компьютерный мозг у них унутре не стоит. Космонавтика, как и ракетные вооружения — вещи вообще консервативные, решения 2000-х не так уж кардинально отличаются от того что летало в 60-х (и продолжает летать до сих пор). В космосе, как-никак, у нас (не у русских, а у землян вообще) сейчас основной извозчик человеков — все та же королевская Р-7, которая, конечно, сильно изменилась со времен первого спутника, но в основе все та же.

И электронный мозг у нее унутре искать не надо. Там даже неонок нету. У нее унутре довольно простая электромеханическая фиговина (ну не сказать, чтобы совсем простенькая, но все-таки перимущественно механическая, а не электро), и никаких выкрутасов она не выписывает — тупо летит туда, куда было указано еще на старте. И то же самое делает «Шаттл». Да, садится-то он уже управляемо, а вот вздетает так же, как «семерка»: стрельнули — летим, как снаряд.

Конечно, в процессе полета ракета «решает» довольно сложные уравнения движения. Но не в том смысле, который в это вкладывают люди. Ее «решалка» — это просто электрическая цепь, которая получает на входе некоторое напряжение от переменного резистора на гироскопе, и имеет на выходе вот такие вот характеристики, описываемые необходимым уравнением. В ракетах 50-60-х эта цепь даже транзиторов почти не имела — конденсаторы и индуктивности (одни интегрируют, другие дифференцируют в силу своей физической природы). Ну, а в относительно новых ракетах появились довольно примитивные, но зато очень неубиваемые БЦВМ, которые эти задачи решают поточнее и понадежнее. Ничего более сложного ни боевой, ни космической ракете и не надо: она не ловит цель, не обходит препятствия, да и вообще все ее управление совершенно пассивное: ракета просто старается не уйти с заданной ей раз и навсегда траектории.

По классике вся полетная программа типичной баллистической ракеты состоит из трех частей:

1. Развернуть ракету под оптимальным баллистическим углом и по азимуту в направлении цели. Современные ракеты шахтного базирования разворачиваются по азимуту сами уже после старта, а многие старые просто заранее наводили «носом на цель», вращая пусковой стол или саму ракету — в т.ч. и нашу любимую Р-7 (как это делается — смотри вот тут: в процессе прицеливания между операторами поддерживается шлемофонная связь). Собственно, и у стоящих сейчас на вооружении России шахтных ракет суть наведения почти такая же — просто вращают не всю ракету, а только гироплатформу, а ракета потом в полете доворачивается, пока не вернет гироплатформу в начальное положение. А вот по тангажу «завалиться» приходится уже после старта: «стрелять» сразу под нужным углом, как это делают со многими зенитными ракетами, тут нельзя — конструкция ракеты слишком хрупка, чтобы крепиться под наклоном.

2. Стабилизировать полет под этим углом и в этом направлении, т.к. на ракета на нижнем участке траектории подвергается атмосферным воздействиям, кроме того, сам двигатель работает далеко не идеально ровно — обо всем этом и в предыдущем посте хорошо рассказано. На старых ракетах малой и средней дальности для стабилизации ракеты хватало схемы с двумя трехстепенными гироскопами (гирогоризонт и гировертикант), позднее придумали гиростабилизированную платформу с тремя двухстепенными. Вся эта машинерия через довольно простые схемы (ну или через БЦВМ с довольно простыми алгоритмами) связана напрямую с рулями. Как это все работает — рассказано у меня вот тут.

А вот у «Фау-2» и у первых модификаций «семерки» для решения этой (а также следующей) задачи использовалось радиоуправление. Но опять-таки не в том смысле, как у машинок в «детском мире» — просто для компенсации не очень хорошей точности гироскопов тех лет она еще и за радиомаяки цеплялась, если начинался уход из радиолуча — ракета стремилась вернуться в него обратно по весьма простому закону управления. Кстати, во многом именно особенности этой системы и потребовали ставить космодром в Казахстане: система требовала очень сильного разнесения радиопередатчиков-маяков, требовались немеряные просторы для их размещения. Потом-таки научились делать более точные гироскопы, придумали гироплатформы, и Королева уговорили от радионаведения отказаться.

3. Отключить двигатель по достижении заданной скорости, точнее, т.н. «кажущеся скорости». Делается это с помощью гироинтегратора продольных ускорений — т.е. опять-таки простого гироскопа, который по мере разгона отклоняется все сильнее, покуда не замкнет заранее установленный контакт. Далее ракета летит, как обычный неуправляемый снаряд. А до тех пор двигатель просто дует, что есть мочи — какое-никакое управление тягой появилось на ракетах относительно недавно, и используется не для навигации, а для решения всяких специфических задач.

У космических и межконтинентальных ракет программа на третьем шаге немного сложнее, конечно. Во-первых, она из нескольких частей: нужно не просто отключить двигатель, а сделать это несколько раз — для каждой ступени отдельно, и запустить движок следующей, ну и, возможно, сделать еще какие-то не требующие сложных вычислений телодвижения — например, с помощью пороховых микродвигателей или открытия сопел противотяги (на твердотопливных ракетах) немножко тормознуть отработавшую ступень, чтобы она случайно не догнала и не стукнула следующую, прежде чем двигатель той выйдет на рабочий режим. А на боевой версии «Р-7» было и еще проще — боеголовку от ракеты в нужный момент отталкивали мощной пружиной, нужно было только замок открыть. Команды на все эти действия успешно подавались (и подаются!) с помощью кулачкового программно-временного механизма с моторчиком. Музыкальной шкатулки, попросту говоря.

Пусковому расчету для управления ракетой (хоть боевой, хоть космической) доступно только два параметра: значение кажущейся скорости, на котором произойдет отключение двигателя (с поправкой на количество ступеней и прочие особенности), и азимут стрельбы. Как задается второе — см. ссылку выше. А первое на фау-два задавалось путем вращения болтика вручную через специальный технологический лючок. На ракетах 60-х — вводилось с пульта путем передачи заданного количества импульсов, а в ракете шаговый двигатель вращал все тот же «болтик» — точнее, кулачок, который _механически_ задавал точку, где гироинтегратор замыкал контакт на отсечку. Требуемое количество импульсов вычислялось в зависимости от дальности стрельбы по заранее составленным таблицам. В более современных комплексах появились спецкалькуляторы на базе машины «Урал» (я не шучу), в шахтных комплексах вообще все модно, кнопками через наземную ЦВМ, но суть та же — вынуть цифру из таблицы и передать количество кликов на борт. Сами таблицы по форме очень близки к артиллерийским, разве что поправок на погодные условия намного меньше. Для космических ракет готовых таблиц нету, требуемое количество кликов считается баллистиками индивидуально, в зависимости от требуемой орбиты. А дальше — все тот же «болтик».

Впрочем, у современных ракет механические гироскопы вытесняются волоконно-оптическими системами, где болтиков нету, а все задается электронно, через БЦВМ. Но суть — все та же.

Дополнения:
Опубликованный еще при первой заявке пост-тизер про команды при запуске Р-7

tupoebydlo.livejournal.com

Межконтинентальная баллистическая ракета: как это работает

В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.
Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых больших секретов в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.

Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в разные стороны, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.

Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.

Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.

fishki.net

Межконтинентальная баллистическая ракета: как это работает

Межконтинентальная баллистическая ракета — весьма впечатляющее творение человека. Огромные размеры, термоядерная мощь, столб пламени, рев двигателей и грозный рокот пуска… Однако все это существует лишь на земле и в первые минуты запуска. По их истечении ракета прекращает существовать. Дальше в полет и на выполнение боевой задачи уходит лишь то, что остается от ракеты после разгона — ее полезная нагрузка. 

При больших дальностях пуска полезная нагрузка межконтинентальной баллистической ракеты уходит в космическую высоту на многие сотни километров. Поднимается в слой низкоорбитальных спутников, на 1000−1200 км над Землей, и ненадолго располагается среди них, лишь слегка отставая от их общего бега. А затем по эллиптической траектории начинает скатываться вниз…

 

Что это, собственно, за нагрузка?

Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.

Головная часть ракеты — это сложный груз из многих элементов. Он содержит боеголовку (одну или несколько), платформу, на которой эти боеголовки размещены вместе со всем остальным хозяйством (вроде средств обмана радаров и противоракет противника), и обтекатель. Еще в головной части есть топливо и сжатые газы. Вся головная часть к цели не полетит. Она, как ранее и сама баллистическая ракета, разделится на много элементов и просто перестанет существовать как одно целое. Обтекатель от нее отделится еще неподалеку от района пуска, при работе второй ступени, и где-то там по дороге и упадет. Платформа развалится при входе в воздух района падения. Сквозь атмосферу до цели дойдут элементы только одного типа. Боеголовки.

Вблизи боеголовка выглядит как вытянутый конус длиною метр или полтора, в основании толщиной с туловище человека. Нос конуса заостренный либо немного затупленный. Конус этот — специальный летательный аппарат, задача которого — доставка оружия к цели. Мы вернемся к боеголовкам позже и познакомимся с ними ближе.

Голова «Миротворца» На снимках — ступени разведения американской тяжелой МБР LGM0118A Peacekeeper, также известной как MX. Ракета была оснащена десятью разделяющимися боеголовками по 300 кт. Ракета снята с вооружения в 2005 году.

 

Тянуть или толкать?

В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.

Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых больших секретов в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.

 Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в разные стороны, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.

Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.

Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения. 

Огненная десятка. К-551 «Владимир Мономах» — российская атомная подводная лодка стратегического назначения (проект 955 «Борей»), вооруженная 16 твердотопливными МБР «Булава» с десятью разделяющимися боевыми блоками.

 

Деликатные движения

Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?

 Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как обручальное кольцо на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.

Ступень нежно, как мать от колыбельки уснувшего дитяти, боясь нарушить его покой, на цыпочках отходит в пространстве на трех оставшихся соплах в режиме малой тяги, а боеголовка остается на прицельной траектории. Затем «бублик» ступени с крестовиной тяговых сопел проворачивается вокруг оси, чтобы боеголовка вышла из-под зоны факела выключенного сопла. Теперь ступень отходит от оставляемой боеголовки уже на всех четырех соплах, но пока тоже на малом газу. При достижении достаточного расстояния включается основная тяга, и ступень энергично перемещается в область прицельной траектории следующей боеголовки. Там расчетно тормозится и снова очень точно устанавливает параметры своего движения, после чего отделяет от себя очередную боеголовку. И так — пока не высадит каждую боеголовку на ее траекторию. Процесс этот быстр, гораздо быстрее, чем вы читаете о нем. За полторы-две минуты боевая ступень разводит десяток боеголовок.

Тестовый запуск межконтинентальной баллистической ракеты Peacekeeper. На снимке с длинной экспозицией видны следы разделяющихся боеголовок

Бездны математики

Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.

 Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.

 В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще… но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.

 

Полет без боеголовок

Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь.

Недолгую, но насыщенную. 

После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в космическом солнце ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные, надувные шарики, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».

 Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.

 Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой? 

 

Последний отрезок

Однако с точки зрения аэродинамики ступень не боеголовка. Если та — маленькая и тяжеленькая узкая морковка, то ступень — пустое обширное ведро, с гулкими опустевшими топливными баками, большим необтекаемым корпусом и отсутствием ориентации в начинающем набегать потоке. Своим широким телом с приличной парусностью ступень гораздо раньше отзывается на первые дуновения встречного потока. Боеголовки к тому же разворачиваются вдоль потока, с наименьшим аэродинамическим сопротивлением пробивая атмосферу. Ступень же наваливается на воздух своими обширными боками и днищами как придется. Бороться с тормозящей силой потока она не может. Ее баллистический коэффициент — «сплав» массивности и компактности — гораздо хуже боеголовочного. Сразу и сильно начинает она замедляться и отставать от боеголовок. Но силы потока нарастают неумолимо, одновременно и температура прогревает тонкий незащищенный металл, лишая его прочности. Остатки топлива весело кипят в раскаляющихся баках. Наконец, происходит потеря устойчивости конструкции корпуса под обжавшей ее аэродинамической нагрузкой. Перегрузка помогает крушить переборки внутри. Крак! Хрясь! Смявшееся тело тут же охватывают гиперзвуковые ударные волны, разрывая ступень на части и разбрасывая их. Пролетев немного в уплотняющемся воздухе, куски снова разламываются на более мелкие фрагменты. Остатки топлива реагируют мгновенно. Разлетающиеся осколки конструктивных элементов из магниевых сплавов зажигаются раскаленным воздухом и мгновенно сгорают с ослепительной вспышкой, похожей на вспышку фотоаппарата — недаром в первых фотовспышках поджигали магний! 

Подводный меч Америки. Американские подводные лодки класса «Огайо» — единственный тип ракетоносцев, находящийся на вооружении США. Несет на борту 24 баллистических ракеты с РГЧ Trident-II (D5). Количество боевых блоков (в зависимости от мощности) — 8 или 16.

 

Все сейчас горит огнем, все обтянуто раскаленной плазмой и хорошо светит вокруг оранжевым цветом углей из костра. Более плотные части уходят тормозиться вперед, более легкие и парусные сдуваются в хвост, растягивающийся по небу. Все горящие компоненты дают плотные дымовые шлейфы, хотя на таких скоростях этих самых плотных шлейфов быть не может из-за чудовищного разбавления потоком. Но издали их видно прекрасно. Выброшенные частицы дыма растягиваются по следу полета этого каравана кусков и кусочков, наполняя атмосферу широким белым следом. Ударная ионизация порождает ночное зеленоватое свечение этого шлейфа. Из-за неправильной формы фрагментов их торможение стремительно: все, что не сгорело, быстро теряет скорость, а с ней и горячительное действие воздуха. Сверхзвук — сильнейший тормоз! Став в небе, словно разваливающийся на путях поезд, и тут же охладившись высотным морозным дозвуком, полоса фрагментов становится визуально неразличимой, теряет свою форму и строй и переходит в долгое, минут на двадцать, тихое хаотичное рассеивание в воздухе. Если оказаться в нужном месте, можно услышать, как тихо звякнет об ствол березы маленький обгорелый кусочек дюраля. Вот ты и прибыла. Прощай, ступень разведения! 

Морской трезубец. На фото — пуск межконтинентальной ракеты Trident II (США) с подводной лодки. В настоящий момент Trident («Трезубец») — единственное семейство МБР, ракеты которого устанавливаются на американских подводных лодках. Максимальный забрасываемый вес — 2800 кг.

 

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

cosmos.mirtesen.ru

Межконтинентальные баллистические ракеты — как они работают?

Как работают межконтинентальные баллистические ракеты? Чего от них ждать? Стоит ли их бояться?

На самом деле ответ зависит от типа баллистической ракеты. Однако большая часть этих устройств запускается непосредственно с Земли, затем отправляется в космическое пространство и после возвращается вновь к планете и резко падают к своей цели.

Пока что нет ни одной страны, которая бы отказалась от создаваемых у себя МБР или не хотела бы запустить их производство. К тому же, на фоне сложившейся политической обстановки во всем мире сильно раздражают экспериментальные запуски межконтинентальных баллистических ракет Северной Кореей.

Понятно, что раз ракеты называется межконтинентальными, значит, они с легкостью преодолевают расстояния между материками. После запуска устройство начинает свое движение по параболе вроде того, как это происходит с мячом в бейсболе. Так же, как в этой игре мяч, снаряд может быть выпущен под любым углом. В случае же с Северной Кореей ракета выпускается практически прямо вверх. Таким образом, устройство, двигаясь в пространстве, преодолевает собственную силу тяжести и не отлетают на далекие расстояния от запустившей их страны. Но ракеты все же падают недалеко от Японии, что заставляет эту страну сильно волноваться за свою безопасность.

Но надо ли бояться северокорейских баллистических ракет? Конечно, нет. Если это государство хотело начать войну, то запуски производились бы совсем по иной траектории. Но с другой стороны, всему миру понятно, что на достигнутом Северная Корея не собирается останавливаться. И ракета Hwasong-15 — последняя из запущенных, пролетевшая по заданной траектории аж тысячу километров, стала тем самым провокационным звеном, который говорит о реальных возможностях специалистов страны. Ведь, будь она отправлена по своему обычному пути, то расстояние составилось бы аж тринадцать тысяч километров, что уже опасно для США.

После взлета межконтинентальные баллистические ракеты переходят в полетную фазу бурения. Ракета несет вперед снаряд примерно минуты две или пять, пока он не достигнет линии космоса. Дальнейшее зависит от составляющих ракеты. В основном у нее есть три ступени, которые отбрасываются после сгорания. Так заканчивается первый этап запуска и начинается второй.

Стоит отметить, что топливо у ракет может быть как жидким, так и твердым. Первые горят, обычно, дольше. Вторые сгорают быстрее и обеспечивают подачу энергии в более короткий промежуток времени.

Второй этап — выход снаряда в космос. Там он летит довольно быстро и просто, поскольку не встречает никакого воздушного сопротивления.

Часть баллистических ракет могут как бы считывать звездную карту, что обеспечивает им более точную ориентацию и попадание в цель.

Наконец, третий и последний этап — это вхождение в атмосферу Земли и непосредственное попадание в цель. Конечно, у каждого типа МБР обязательно должны быть специальные экраны, иначе устройство может развалиться еще при жарком проходе через атмосферу.

Поделиться

Твитнуть

Поделиться

Плюсануть

Поделиться

Твитнуть

Поделиться

Плюсануть

mks-onlain.ru

Как быстро до вас долетит баллистическая ракета

https://sozero.livejournal.com/2017/12/07/
Межконтинентальная баллистическая ракета — абсолютное оружие. И это не преувеличение. МБР способна доставить свой груз в любую точку планеты и, достигнув цели с невероятной точностью, уничтожить практически что угодно. Итак, куда же несётся ужас на крыльях баллистической ракеты?

Рассмотрим в качестве основного примера самую «открытую» и бесхитростную современную МБР — Minuteman-III (индекс МО США LGM-30G). Ветерану американской стратегической триады скоро пятьдесят (первый пуск — в августе 1968 года, постановка на дежурство — 1970 год). Так сложилось, что на данный момент 400 таких «ополченцев» — единственные МБР сухопутного базирования в американском арсенале.
Когда на командный пункт поступит приказ, современная МБР шахтного базирования будет запущена в течение двух-трёх минут, причём большая часть этого времени уйдёт на верификацию команды и снятие многочисленных «предохранителей». Высокая скорость запуска является важным преимуществом шахтных ракет. Грунтовому ракетному комплексу или поезду требуется ещё несколько минут, чтобы остановиться, развернуть опоры, поднять ракету, — и только после этого произойдёт пуск. Что уж говорить о подводной лодке, которая (если заранее не находилась на минимальной глубине в полной готовности) начнёт запускать ракеты примерно через 15 минут.
Затем откроется крышка шахты, и из неё «выскочит» ракета. Современные отечественные комплексы используют так называемый миномётный или «холодный» старт, когда ракета выбрасывается в воздух отдельным небольшим зарядом и только потом запускает свои двигатели.
Затем для МБР наступает самое ответственное время — надо максимально быстро проскочить атмосферный участок над районом развёртывания. Именно там её ждёт сильная жара и ветер порывами до нескольких километров в секунду, поэтому активный этап полёта у МБР длится всего несколько минут.
У Minuteman-III первая ступень работает ровно минуту. За это время ракета поднимается на высоту 30 километров, двигаясь не вертикально, а под углом к земле. Вторая ступень, также за минуту работы, закидывает ракету уже на 70-90 километров — здесь всё сильно зависит от расстояния до цели. Поскольку твердотопливный двигатель выключить уже невозможно, приходится регулировать дальность крутизной траектории: нужно дальше — взлетаем выше. Третью ступень при запуске на минимальную дистанцию можно и вовсе не запускать, сразу приступив к разбрасыванию подарочков. В нашем случае (на видео ниже) она отработала, закончив трёхминутную работу самой ракеты.

К тому времени полезная нагрузка находится уже в космосе и движется почти с первой космической скоростью — самые дальнобойные МБР разгоняются до 7 км/с, а то и сильнее. Неудивительно, что с минимальными доработками тяжёлые МБР, такие как отечественная Р-36М/М2 или американская LGM-118 «Peacekeeper», успешно использовались в качестве лёгких ракет-носителей.

Дальше начинается самое интересное. В дело вступает так называемый «автобус» — платформа/ступень разведения боевых блоков. Он поочерёдно сбрасывает боевые блоки, направляя их на верный путь. Это настоящее техническое чудо — «автобус» делает всё настолько ровно, что небольшие конусы без систем управления, пролетев над морями и континентами половину земного шара, укладываются в радиус всего в несколько сотен метров! Такая меткость обеспечивается сверхточной и безумно дорогой инерционной навигационной системой. На спутниковые системы полагаться нельзя, хотя как вспомогательное средство используются и они. И на этой стадии уже нет никаких сигналов самоликвидации — слишком велик риск, что враг сможет их сымитировать.

Вместе с боевыми блоками «автобус» также закидывает вражеские ПРО ложными целями. Поскольку возможности платформы ограничены как по времени, так и по запасу топлива, блоки от одной ракеты могут поразить цели лишь в одном регионе. По слухам, наши недавно испытали новую модификацию «Ярса» сразу с несколькими «автобусами», индивидуальными для каждого блока, — и это уже снимает ограничение.

Блок прячется среди множества ложных целей, его место в боевом порядке неизвестно и выбирается ракетой случайным образом. Количество ложных целей может превышать сотню. Кроме того, разбрасывается ещё и целая россыпь средств создания радиолокационных помех — как пассивных (пресловутые облака нарезанной фольги), так и активных, создающих для радаров противника дополнительный «шум». Интересно, что созданные ещё в 1970–80-е годы средства до сих пор легко преодолевают ПРО.

Ну, а дальше, после относительно тихой фазы путешествия, боевой блок входит в атмосферу и устремляется к цели. Весь полёт занимает на межконтинентальной дальности около получаса. В зависимости от типа цели возможен подрыв либо на заданной высоте (оптимально для поражения города), либо на поверхности. Некоторые боевые блоки, обладающие достаточной прочностью, могут поражать даже подземные цели, а другие перед входом в атмосферу способны оценивать своё отклонение от идеальной траектории и корректировать высоту подрыва. Блоки, состоящие на вооружении, не маневрируют самостоятельно, но их появление — дело ближайшего будущего.

Чем внимательнее рассматриваешь МБР, тем яснее понимаешь, что по техническому совершенству и сложности она не уступает «настоящим» космическим ракетам-носителям. И это неудивительно — ведь нельзя кому попало доверять сверхбыструю доставку маленькой и живущей всего мгновение звезды.

Александр Ермаков

Ссылка.(https://warhead.su/2017/12/05/absolyutnoe-oruzhie-kak-bystro-do-vas-doletit-ballisticheskaya-raketa)

marafonec.livejournal.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *