Плазменный ракетный двигатель – Плазменный ракетный двигатель VASIMR :: Проекты :: Проект Освоения Космоса

Содержание

Плазменный ракетный двигатель

плазменный двигатель
Пла́зменный дви́гатель (также плазменный инжектор) — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы.

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Содержание

  • 1 Принцип работы
  • 2 См. также
  • 3 Примечания
  • 4 Ссылки

Принцип работы

Нейтральный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора.

См. также

  • Электрический ракетный двигатель
  • Ионный двигатель
  • VASIMR
  • Стационарный плазменный двигатель

Примечания

  1. Большая Советская Энциклопедия, Третье издание БСЭ, 1969—1978 г.
  2. Журнал Космические исследования, том XII, в.3, стр.461
  3. Журнал Технической физики, том XLII, в.1, стр.54

Ссылки

  • Дмитрий Мамонтов. Потомки повелителя ветров: Вместо сердца — плазменный мотор! (рус.). Популярная механика (Декабрь 2005). Проверено 22 июля 2010. Архивировано из первоисточника 21 марта 2012.
  • Lisa Grossman. Плазменный мотор: 40 дней до Марса (рус.). Популярная механика (27.07.09). Проверено 22 июля 2010. Архивировано из первоисточника 21 марта 2012.
п·о·р Двигатели  
Двигатели внутреннего сгорания (кроме турбинных)  
Возвратно-поступательные
Количество тактовДвухтактный двигатель (двигатель Ленуара) • Четырёхтактный двигатель • Шеститактный двигатель
Расположение цилиндровРядный двигатель (U-образный двигатель) • Оппозитный двигатель • Н-образный двигатель • V-образный двигатель • VR-образный двигатель • W-образный двигатель • Звездообразный двигатель (вращающийся) • X-образный двигатель
Типы поршнейСвободно-поршневые • Двигатель со встречным движением поршней (дельтообразный) • Аксиальные
Способ воспламененияДизельные • Компрессионные карбюраторные • Калильно-компрессионный • Калильные карбюраторные • Батарейное зажигание • Магнето • Дуговые и искровые свечи
РоторныеДвигатель Ванкеля • Орбитальный двигатель (двигатель Сарича) • Роторно-лопастной двигатель Вигриянова
КомбинированныеГибридные • Двигатель Хессельмана
Воздушно-реактивные  
Основные типы
БескомпрессорныеПрямоточные • Пульсирующие
ТурбореактивныеТурбовентиляторные (двухконтурные) • Турбовинтовые • Турбовинтовентиляторные • Турбовальные
Модификации
и гибридные системы
Мотокомпрессорный воздушно-реактивный двигатель • Гиперзвуковые прямоточные
См. также: Газотурбинные двигатели
Ракетные двигатели  
Химические
ЖидкостныеЗакрытого цикла • Открытого цикла • С фазовым переходом • Двигатель Вальтера
ДругиеТвердотопливные • Топливно-гибридные
ЯдерныеТермоядерные • Газофазно-ядерные • Твёрдофазно-ядерные • Солевые
ЭлектрическиеПлазменные (электромагнитный ускоритель VASIMR) • Ионные • Электротермические • Электростатические
ДругиеКлиновоздушный • Двигатель Бассарда
Двигатели внешнего сгорания  
Паровая машина • Двигатель Стирлинга • Пневматический двигатель
Турбины и механизмы с турбинами в составе  
По виду рабочего тела
ГазовыеГазотурбинная установка • Газотурбинная электростанция • Газотурбинные двигатели‎
ПаровыеПарогазовая установка • Конденсационная турбина
Гидравлические турбины‎Пропеллерная турбина • Гидротрансформатор
По конструктивным особенностям Осевая (аксиальная) турбина • Центробежная турбина (радиальная • диагональная) • Радиально-осевая турбина (турбина Френсиса) • Поворотно-лопастная турбина (турбина Каплана) • Ковшовая турбина (турбина Пелтона) • Турбина Турго • Ротор Дарье • Турбина Уэльса • Турбина Тесла • Сегнерово колесо
Электродвигатели  
Постоянного тока • Переменного тока • Трёхфазные • Двухфазные • Однофазные • Универсальные
АсинхронныеКонденсаторный двигатель
СинхронныеБесколлекторные • Коллекторные • Вентильные реактивные • Шаговые
ДругиеЛинейные • Гистерезисные • Униполярные • Ультразвуковые • Мендосинский мотор
Биологические двигатели  
Моторные белкиАктин • Динеин • Кинезин • Миозин • Тропомиозин • Тропонин • Флагеллин
См. также: Вечный двигатель • Мотор-редуктор • Резиномотор

плазменный двигатель


Плазменный ракетный двигатель Информацию О




Плазменный ракетный двигатель Комментарии

Плазменный ракетный двигатель
Плазменный ракетный двигатель
Плазменный ракетный двигатель Вы просматриваете субъект

Плазменный ракетный двигатель что, Плазменный ракетный двигатель кто, Плазменный ракетный двигатель описание

There are excerpts from wikipedia on this article and video

www.turkaramamotoru.com

Плазменный ракетный двигатель VASIMR :: Проекты :: Проект Освоения Космоса

Новая ракетная технология могла бы сократить время полета к Марсу

Соглашение о сотрудничестве в развитии передовой ракетной технологии, которая могла бы вдвое сократить время полета к Марсу, позволив начать исследования Солнечной системы человеком в следующем десятилетии, было подписано между Космическим центром им. Джонсона NASA в Хьюстоне, штат Техас, и компанией MSE Technology Applications Inc. в Butte, Массачусетс.

Такая технология могла бы снизить общую дозу радиации, которую получили бы астронавты, и уменьшить время, проведенное в невесомости, что могло бы минимизировать потерю костной и мышечной массы и изменения в кровеносной системе.

  1. радиочастотный усилитель (RF Amplifier)
  2. направляющий разветвитель (Directional Coupler)
  3. коробка зажигания (Match Box)
  4. спиральная антенна (Helicon Antenna)
  5. антенна ионно-циклотронно-резонансной частоты (ICRF Antenna)

Эта технология, названная магнитоплазменной ракетой с переменным удельным импульсом (Variable Specific Impulse Magnetoplasma Rocket — VASIMR), разрабатывается в Джонсоновской лаборатории перспективных космических двигателей (Johnson’s Advanced Space Propulsion Laboratory). Директором лаборатории является Franklin Chang-Diaz, астронавт NASA, получивший докторскую степень по прикладной физике плазмы и технологии термоядерного синтеза в Массачусетском технологическом институте в Кембридже.

Chang-Diaz начал работать над плазменной ракетой в 1979 году. Эту ракету, позволяющую развивать большую мощность и скорость, он считает предшественницей термоядерных ракет.

Плазма, которую иногда называют четвертым состоянием вещества, является ионизированным (электрически заряженным) газом, состоящим из атомов, лишенных некоторых из своих электронов. Из плазмы сделаны звезды. Это газ, нагретый до чрезвычайно высоких температур в миллионы градусов. Ни один из известных материалов не мог бы выдержать таких температур. К счастью, плазма является хорошим электрическим проводником. Это свойство позволяет удерживать ее, управлять ей и ускорять ее с помощью правильно созданных магнитных полей.

Двигатель VASIMR состоит из трех связанных магнитных отсеков (камер). В переднем отсеке осуществляется подача газообразного топлива и его ионизация. Центральный отсек действует как усилитель для дальнейшего разогрева плазмы, Последний отсек представляет собой магнитное сопло, преобразующее энергию газа в направленный поток.

Нейтральный газ, обычно водород, подается в передний отсек и ионизируется. Образующаяся плазма разогревается электромагнитным полем в центральной камере посредством ионного циклотронного резонансного нагрева. В ходе этого процесса радиоволны передают свою энергию плазме, нагревая ее, подобно тому, как это происходит в микроволновой печи.

После нагревания плазма направляется магнитным полем в последний отсек для создания модулированной тяги. Последний отсек — это магнитное сопло, преобразующее энергию плазмы в скорость истечения струи, обеспечивающее при этом защиту конструкции и эффективный выход плазмы из магнитного поля.

Ключевым моментом в технологии является возможность изменять, или модулировать, истечение плазмы для поддержания оптимальной двигательной эффективности. Это похоже на автомобильную трансмиссию, которая дает возможность наилучшего использования мощности двигателя, в зависимости от движения по автостраде или по пересеченной местности.

В экспедиции к Марсу такая ракета непрерывно ускорялась бы во время первой половины полета, а затем изменяла бы положение и замедлялась бы во второй половине. Полет мог бы занять немногим более трех месяцев. Экспедиция с использованием обычных химических двигателей заняла бы от семи до восьми месяцев.

Существует также потенциал для применения этой технологии в коммерческом секторе. Плазменная ракета с переменным выхлопом обеспечила бы важную операционную гибкость при выводе спутников на орбиту Земли.

В рамках общей концепции разрабатывается ряд новых технологий, сказал Chang-Diaz. Они включают магниты, становящиеся сверхпроводимыми при космических температурах, компактное оборудование для генерации энергии, компактные и надежные радиочастотные системы для создания и разогрева плазмы.

Координируемое Джонсоновским Офисом передачи технологий и коммерциализации, соглашение предусматривает совместные усилия по разработке передовых двигательных технологий без передачи денег между двумя партнерами. Такие соглашения являются частью продолжающихся усилий NASA по переводу значимых общественных исследований и разработок в частный сектор.

kuasar.ru

Плазменный ракетный двигатель — Вики

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

ru.wikiredia.com

Плазменные двигатели: миф и реальность

     Экстремально сложная проблема создания космического аппарата, способного за разумное время (сравнимое с человеческой жизнью) преодолеть межзвездные расстояния, обусловлена парадигмой традиционной ракеты. Которая несет на борту запас топлива и, как следствие, расходует на его разгон почти всю извлекаемую из топлива энергию! Математическим выражением этого проклятия является т.н. формула Циолковского, вытекающая из закона сохранения импульса:

     Здесь не учитываются затраты топлива на подъем с Земли и выход на орбиту, где начинается разгон до крейсерской скорости. Однако очевидно, что прежде чем отправиться в далекое путешествие, корабль будет собран из модулей на околоземной или окололунной орбите.   

 

 Ионный двигатель

На сегодняшний день отсутствует ясное представление о том, как именно космические аппараты когда-нибудь преодолеют рубеж скорости в 10 000 км/cек. Это — примерно 130 лет полета до ближайшей звездной системы Альфы Центавра. Нет смысла рассматривать бесплодные фантазии вроде фотонного звездолета. Нелепа сама идея использовать для создания тяги фотоны с их ничтожным по сравнению с энергией импульсом ! В качестве реальной возможности рассматривается двигатель, использующий энергию термоядерного синтеза. Однако предлагаемые методы  синтеза в малом масштабе, сводящиеся к поджиганию таблеток из дейтерия + гелия-3 лучами лазеров или пучками ионов/электронов, едва ли когда-нибудь будут реализованы на борту космического судна http://extremal-mechanics.org/?p=423#more-423. Надежды на солнечные паруса безнадежны, т.к. по мере удаления от Солнца их тяга стремится к нулю. При площади паруса в 1000 кв. км и фантастической массе аппарата с парусом в 1 тонну, через год будет пройдено 107.7 млрд. км, а скорость парусника достигнет 1714 км/сек. И это практический предел, поскольку даже через 700 лет полета, когда аппарат достигнет системы Альфа-Центавра, скорость не превысит 1715 км/сек. Полубезумные проекты парусов размером с Европу, которые приводятся в движение миллионами лазеров с Луны, наглядно демонстрируют бессилие идеи космического парусника. Хотя для полетов в Солнечной системе, не слишком далеко от Солнца, она имеет определенную перспективу. 

   Среди испытанных конструкций, способных дать существенную тягу, вне конкуренции ядерные двигатели с теплоносителем (ЯРД). В СССР был разработан и испытан превосходный образец такой установки — РД0410 http://www.kbkha.ru/?p=8&cat=11&prod=66 . Скорость истечения рабочего тела из сопла, т.е. удельный импульс ЯРД может составлять 9 — 10 км/сек. Это более, чем вдвое превышает показатели любых химических ракетных двигателей. При разумном ограничении стартовой массы в 10 000 тонн и скромной нетто-массе 100 т (без учета топлива и рабочего тела), предельная скорость корабля

 км/сек.

Отлично для полетов в Солнечной системе, но не годится для путешествия в систему Альфа Центавра, которое продлилось бы около 29 000 лет ! Двухступенчатая схема даст вдвое большую скорость, но стартовая масса вырастет на порядок. Для нашего корабля с ЯРД и нетто-массой 100 т, который разогнался до скорости 200 км/сек, стартовая масса приблизилась бы к  50 миллиардам тонн !  Скорости  км/сек отвечает не столь кошмарный, но тоже впечатляющий запас рабочего тела, который превышает 2 миллиона тонн. Таким образом 100 км/сек — это трудно достижимый, практический предел для ракет с ЯРД, по мере приближения к которому начинается гигантомания. Из формулы Циолковского вытекает, на первый взгляд, простое решение проблемы. Нужно на порядки увеличить удельный импульс , и тогда не придется экспоненциально наращивать расход рабочего тела. Для этого принципиально не годится ЯРД —  в связи с тем, что рабочее тело нагревается в ядерном реакторе. Необходимую скорость истечения струи может обеспечить т.н. плазменный двигатель. Данный термин можно отнести к большому семейству устройств, различным образом оперирующих с плазмой, включая ионные двигатели.

Классические плазма-моторы

       Любой ракетный двигатель выбрасывает из сопла слабоионизированную плазму, но плазменным, ионным, электрореактивным обычно называется лишь тот, который ускоряет плазму за счет электромагнитных сил, действующих на заряженные частицы. Однако сделать это очень сложно, поскольку любое электрическое поле, ускоряющее заряды в плазме, придаст равные по модулю суммарные импульсы ионам и электронам. В самом деле, изменение импульса заряда за время равно , где – сила, действующая на заряд (в поле с напряженностью ). Поскольку плазма в целом электрически нейтральна, сумма всех положительных зарядов равна по модулю сумме отрицательных . За бесконечно малое время вся масса положительных ионов получит импульс . Такой же по величине импульс, направленный в обратную сторону, получит вся масса отрицательных зарядов.  Поэтому суммарный импульс равен нулю и, следовательно, тяги не возникнет. 

    Таким образом, для электрического разгона плазмы необходимо как-то разделить разноименные заряды, чтобы разогнать заряды одного знака, в то время как заряды другого знака выведены из зоны действия ускоряющего поля. Однако эффективно разделить заряды крайне сложно! Этому препятствуют мощные кулоновские силы притяжения, возникающие между разноименно заряженными сгустками плазмы и немедленно восстанавливающие электрическое равновесие. Применяемые в существующих плазменных двигателях методы разделения положительных ионов с электронами используют электростатическое или магнитное поле. В первом случае двигатель традиционно называется ионным, а во втором — плазменным.

Схема электростатического ионного двигателя.  

Функциональная схема «классического» ионного двигателя»:


1 — подвод рабочего тела; 2 — ионизатор; 3 — пучок ионов; 4 — фокусирующий электрод; 5 — ускоряющий электрод; 6 — блокирующий электрод; 7 — нейтрализатор; 8 — основной источник энергии; 9 — вспомогательный источник энергии.В сравнительно узком интервале между сетчатыми анодом 4 и катодом 5 происходит разгон положительных ионов газа (ксенон, аргон, водород и т.д.), являющегося рабочим телом двигателя. При этом свободные электроны, образующиеся в процессе ионизации, притягиваются к аноду, после чего выводятся в истекающую наружу струю положительно заряженного газа, для его нейтрализации. Катод 6 блокирует притягивание к аноду электронов, покидающих нейтрализатор 7. Анодом является не только электрод 4, но и вся внешняя оболочка камеры, в которой происходит ионизация газа. Анод имеет наибольший потенциал ~1 000 В, в то время как потенциал катода 5 составляет ~100 В, а у катода 6 он еще ниже.  

       Скорость струи газа, ускорившейся в промежутке между сетками 4 и 5, может доходить до 200 км/cек. Однако тяга ионного двигателя ничтожно мала, в лучшем случая достигая ~ 0.1 ньютона. Это прямо связано с проблемой разделения ионов и электронов. Которая в этом, как и во всех других плазменных двигателях решается крайне неэффективно. Оптимистически предположим, что тягу ионного двигателя с удельным импульсом 200 км/cек удалось довести до 1 ньютона (100 грамм). Тогда корабль со стартовой массой около 15 000 тонн, из которых 14 900 т приходится на рабочее тело (газ), сумеет разогнаться до 1 000 км/сек  (по формуле Циолковского   . Время разгона выражается формулой   ,  где — полученный кораблем импульс и — сила тяги. В данном случае имеем   = 100 000 кг ⋅ 1 000 000 м/сек / 1 Н = 100 млрд. секунд, что составляет примерно 3 200 лет ! И это — только нижняя оценка, а фактическое время разгона будет значительно больше вследствие того, что в числитель дроби  нужно добавить также импульс, который получило рабочее тело до того, как прошло через двигатель и вылетело из сопла.

    Мощность такого двигателя равна = 200 000 Ватт. Реально работающие образцы имеют на порядок меньше. Чтобы сократить время разгона до крейсерской скорости , т.е., увеличить тягу, следует повысить потребляемую электрическую мощность и, соответственно, габариты двигателя. Предположим, что таким образом мы увеличили тягу в 1 000 раз и сократили время разгона до разумных 3.2 года. Неплохо для скорости км/cек, хотя до Альфы Центавра пришлось бы лететь еще 1 300 лет. Однако потребляемая мощность составит сотни мегаватт, что соответствует мощности энергоблока средней АЭС. Это означает, что не существует разумных источников энергии для космических ионных двигателей с тягой хотя бы в десятки килограмм.

           Еще в 60-х годах А.И. Морозов предложил свой концепт плазменного двигателя, который был успешно испытан в 70-х. Здесь заряды разделяются радиальным магнитным полем, которое прикладывается в зоне разгона положительных ионов продольным электрическим полем. Значительно более легкие электроны, под действием сил Лоренца, спирально навиваются на силовые линии магнитного поля и как бы «выдергиваются» магнитным полем из плазмы. При этом массивные ионы по инерции проскакивают магнитное поле,  ускоряясь электрическим в продольном направлении. Механизм нейтрализации  работает также, как в ионном двигателе. Данная схема, имея перед ним определенные преимущества, не позволяет добиться существенно большей тяги при сравнимой мощности. Магнитный метод разделения зарядов далек от эффективного решения проблемы и не позволяет создавать плазменные двигатели, которые могли бы быть использованы для межзвездных путешествий.

      Чтобы убедиться в этом предположим, что 1 грамм ионов удалось разделить с электронами и последние скопились на выходе из сопла, навиваясь на силовые линии поперечного магнитного поля с индукцией Тс. Тогда этот избыточный отрицательный заряд составит примерно -95 000 Кл. Легко проверить, что соответствующие «избыточные» ионы с общей массой 1 г за несколько фемтосекунд разгонятся до ~10 000 км/сек. При этом электроны избыточного заряда не приобретут равного импульса навстречу ионам, что нивелировало бы реактивный эффект, т.к. за магнитное поле завернет эти электроны на круговые траектории с радиусами порядка 1 метр.  Таким образом,  для придачи аппарату тягового импульса  10 000 кг ⋅ м / сек = 0.001 кг ⋅ 10 000 000 м/cек придется  в объеме нескольких кубометров создать сверхмощное магнитное поле порядка 10 000 Тесла. Такие экстремальные  поля создаются только взрывомагнитными генераторами А.Д. Сахарова и их современными вариациями, причем они существуют лишь микросекунды и в объемах, измеряемых кубическими дециметрами. При этом энергия магнитного поля будет иметь порядок 10 ТераДжоулей. С учетом того, что кумулятивные генераторы способны преобразовать до 20 – 30 % энергии химического взрыва, для придания космическому аппарату тягового импульса ~10 000 кгм/сек пришлось бы эффективно утилизировать энергию ядерного взрыва мощностью ~10 Кт.  

    При массе корабля в 100 т потребуется миллион таких импульсов, чтобы увеличить его скорость всего на 100 км/cек. И то лишь при условии, что ядерные заряды не пришлось везти на борту и они были заблаговременно размещены в космосе на участке разгона. Но миллион ядерных бомб — это несколько тысяч тонн плутония, которого за весь период существования ядерного оружия было произведено немногим более 300 тонн.  Таким образом, имея лишь плазменным мотор с магнитным разделением зарядов, о полете к звездам лучше забыть.

 Что делать с плазмой ?

  По-видимому, проблема эффективного разделения зарядов в плазменных двигателях принципиально неразрешима. Существуют передовые проекты плазменных двигателей с мощностью 5 МВт и удельным импульсом 1 000 км/cек, но их тяга была бы равна 5 000 000 Вт / 1 000 000 м/сек = 5 Н, поэтому проблема сокращения времени разгона остается непреодолимой. Не говоря уже о том, что в космосе трудно добыть мегаватты потребляемой электрической мощности.

       Понимая эти проблемы, разработчики плазменных моторов ищут другие подходы. Заметный энтузиазм вызывает новый концепт VASIMR, который в лаборатории показывает лучшие среди плазменных движков результаты: удельный импульс 50 км/cек, тяга 6 ньютонов и КПД 60 — 70 % (тест VX-200). Строго говоря VASIMR даже не является плазменным двигателем, потому что он генерирует высокотемпературную плазму, которая разгоняется в сопле Лаваля — за счет газодинамических эффектов и без электричества.

    Через трубку 1 под давлением подается газ, который сначала разогревается и слегка ионизируется микроволновым излучением от 3. Затем поток плазмы, изолированный от стенок магнитным полем катушек 4, дополнительно разогревается антенной 5, которая излучает радиоволны на циклотронной частоте (это частота винтового вращения электрона вокруг силовой линии продольного магнитного поля) . Такой резонансный нагрев повышает температуру плазмы до миллионов градусов, после чего она истекает в магнитное сопло Лаваля 6. Последнее предохраняет стенки от контакта с горячей плазмой и преобразовывает энергию теплового движения ионов в энергию поступательного движения газовой струи. В сущности VASIMR позволяет получить очень горячую, высоко ионизированную плазму посредством микроволнового нагрева. Ускорение плазмы происходит вполне аналогично тому, как ускоряется газовая струя на выходе из обычного ракетного двигателя.  Сжиганием химического топлива такую температуру плазмы получить нельзя, но за счет ядерного взрыва это сделать можно. Результаты VASIMR демонстрируют некоторый прогресс, но они по-прежнему бесконечно далеки от потребностей межзвездных экспедиций и явно не имеют перспектив развития в этом направлении. Что касается удельного импульса, то VASIMR является шагом назад.

Источник:   http://spaceflight.nasa.gov/shuttle/support/researching/aspl/images/vasimr.jpg

      Есть еще один, сравнительно новый концепт плазменного двигателя — MPD thruster, с которым связывают большие надежды. Идея заключается в следующем. Создается такой плазменный разряд между анодом и катодом, чтобы соответствующий  электрический  ток индуцировал кольцевое магнитное поле  . Силой Лоренца  поле действует на движущиеся заряды тока  , отклоняя часть из них в продольном направлении. Так возникает истекающий «вправо» сгусток плазмы, который создает тяговый толчок. Двигатель работает в импульсном режиме, т.к. необходимы короткие паузы между разрядам для скапливания зарядов на электродах.      

      MPD — thruster не нуждается в разделении разноименных зарядов, потому что в разрядном токе они движутся во встречных направлениях и, соответственно, силы Лоренца имеют одинаковые направления. Теоретически этот концепт имеет выдающиеся показатели на фоне других плазменных моторов, потому что может развивать килограммы тяги. Однако магнитное поле в принципе не способно разгонять электрические заряды, потому что сила Лоренца действует перпендикулярно скорости заряда и, стало быть,  не меняет его кинетическую энергию.  MPD — thruster лишь отклоняет направление движения зарядов так, что плазма вылетает наружу в продольном направлении.  Но для того, чтобы ток между анодом и катодом был достаточно плотным для создания тяги,  придется затратить много электрической энергии. Во всяком случае, потребляемая  электрическая мощность не уступает мощности плазменной струи. При удельном импульсе ~1 000 км/сек и тяге в 100 кг потребляемая мощность составит сотни мегаватт, что практически невозможно генерировать в космосе. Но даже при таких,  возможных пока лишь теоретически показателях  MPD — thruster-а, оснащенный им корабль с нетто-массой 100 т разгонится до 10 000 км/сек за 317 лет (!)  при нереальной стартовой массе 2 200 000 тонн.  Кроме того, невозможно вообразить себе  расход миллионов тонн  газа в двигателе, пропускающем через него мощные электрические разряды.  Очевидно, что никакие электроды не выдержат таких тепловых и химических нагрузок.

Принципиальная Схема MPD — thruster,  Источник:  http://www.emeraldinsight.com/journals.htm?articleid=877310&show=html

   Таким образом ясно, что ни один из экспериментально проверенных или  теоретически просчитанных плазменных двигателей не способен доставить космический корабль к ближайшим звездам хотя бы за время человеческой жизни.  И этот разрыв, по-видимому, является фатально непреодолимым, так что плазменные двигатели звездолетов навсегда останутся в сфере научной фантастики. Однако плазменные моторы имеют важные применения  в качестве маневровых, корректирующих орбиты и т.п.  вспомогательных двигателей космических аппаратов, поэтому усилия по их разработке вполне оправданы.  Что касается  ядерных ракетных двигателей, то они также не годятся для межзвездных полетов, но прекрасно подходят для межпланетных путешествий в Солнечной системе. При этом ядерный импульсный двигатель, утилизирующий энергию ядерных взрывов, возможно имеет потенциал развития в контексте отправки автоматического зонда  в одну из ближайших звездных систем.

Дополнение к статье, сделанное 5 января 2018

   Если согласиться со временем ожидания прибытия зонда к Альфе-Центавра в 1 000 — 1 500 лет, то ионный двигатель может оказаться подходящим. Хотя такой проект технически крайне сложен, он выглядит осуществимым при сегодняшнем уровне науки и технологий.

   Предположим, что удалось добиться тяги ионного двигателя в Н при удельном импульсе км/сек. Такой мотор был бы очень хорош! Их может быть и несколько, объединенных в двигательную установку с общей тягой 10 Н (1 кгс приблизительно).

   Согласно формуле Циолковского, автоматический зонд с разумной нетто-массой 1 000 тонн, израсходовав 1 750 тонн рабочего тела (пусть это будет газ — неон с атомной массой 20), разгонится до почти 1 100 км/сек. Тогда время полета до Альфы-Центавра составит 1 200 — 1 250 лет с учетом разгона. Впрочем, нужно учесть еще скорость покидания Солнечной системы около 42 км/сек под углом углом 61 градус к плоскости эклиптики http://extremal-mechanics.org/wp-content/uploads/2012/11/LongShot.pdf (приблизительно 15 км/сек из этой скорости даст Земля — эффект пращи). Затем включится маршевый ионный двигатель, которому предстоит непрерывно проработать около 100 лет. Таким образом, крейсерская скорость составит около 1 150 км/сек, но время в пути сократится меньше, чем на 50 лет.

   Время разгона примем лет. Это — реалистичное время, в течение которого должна проработать энергосистема корабля в режиме полной тяги. Для сравнения, радиоизотопные термо-электрогенераторы Вояджеров работают на уже почти 40 лет и их мощность выше 70% от начальной. При этом период полураспада плутония-238 равен 87.7 года.

   Однако, радиоизотопные источники не способны обеспечить нужную электрическую мощность (ниже мы увидим, что она имеет порядок 350 МВт). Для сравнения, на Вояджерах мощность энергоустановки около 500 Вт. Для выработки 350 МВт потребуются тысячи тонн плутония! И это — без общей массы огромного числа термопар. По-видимому, такой способ получения энергии нельзя считать реалистичным.

   Ядерный реактор подходит больше, хотя крайне сложно добиться его непрерывной работы в замкнутом цикле в течение века. Здесь ведь нужно решать проблему периодической замены ТВЭЛов, а также постепенного «отравления» активной зоны реактора. Но можно предположить, что 100 лет безотказной работы реактора с турбоустановкой технически достижимы.

   Тогда импульс струи, выбрасываемой из сопла за 1 сек, грубо оценим, как

кг*м/сек,

где — конечный импульс зонда и — импульс 1 750 тонн рабочего тела при скорости 1 100 км/сек (так мы учитываем импульс рабочего тела, приобретаемый им до вылета из двигателя в виде плазмы).

   Отсюда массовый расход рабочего тела (ионизированный неон) грамма/сек. Умножая это число на сек (= 1 век, считая все годы по 365 дней), получим 2 060 тонн, что несколько больше предполагаемых 1 750 тонн, поскольку оценка времени разгона была довольно грубой. Одновременно мы видим, что эта погрешность незначительна, поэтому реальное время разгона будет несущественно отличаться от 100 лет (может быть 110 или 90 лет, к примеру).

   Считая неоновую плазму однократно ионизированной (однозарядные ионы), получим силу тока в струе ионов до их нейтрализации на выходе из «сопла»:

Aмпер,

где — масса и — заряд протона. Поскольку для разгона ионов до 1 000 км/сек потребуется поле с напряжением килоВольт, мощность системы разгона плазменной струи MBт.

Здесь не учитываются тепловые потери в цепи ионного двигателя, по которой будет протекать ток в 3 килоАмпер, а также затраты энергии на ионизацию рабочего тела (хотя последние, наверное, будут сравнительно малы).

   Таким образом, можно оценить снизу электрическую мощность энергоустановки в 350 МВт. Потребуется весьма мощный турбоагрегат, сравнимый с энергоблоком АЭС! Удастся ли поддерживать его непрерывную работу около века при массе зонда в 1 000 тонн? — это большой вопрос. Но выглядит все это, тем не менее, не фантастически.

   Никакой возможности затормозить у такого зонда не будет. А без этого нет смысла  ждать его прибытия 1 250 лет! Чтобы иметь возможность торможения для выхода на орбиту в системе Альфа-Центавра, нужно увеличить стартовую массу до порядка 10 000 тонн как минимум. Такой корабль с тягой ионных двигателей в несколько кгс должен быть собран на околоземной орбите и разогнан до скорости покидания Солнечной системы в направлении Альфа-Центавра ( км/сек) с помощью, например, ядерного импульсного двигателя типа Ориона. 

extremal-mechanics.org

Плазменный ракетный двигатель Википедия

Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

ruwikiorg.ru

WikiZero — Плазменный ракетный двигатель

Wikipedia open wikipedia design. Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 523 дня)].

www.wikizero.com

Плазменный ракетный двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016; проверки требуют 6 правок. Схематическое устройство плазменного ускорителя

Пла́зменный дви́гатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы[1].

Существует множество типов плазменных двигателей. В настоящее время наиболее широкое распространение — в качестве двигателей для поддержания точек стояния геостационарных спутников связи — получили стационарные плазменные двигатели, идея которых была предложена А. И. Морозовым в 1960-х гг. Первые лётные испытания состоялись в 1972 г[2]. Плазменные двигатели не предназначены для вывода грузов на орбиту, и могут работать только в вакууме. Плазменные двигатели не следует путать с ионными.

Принцип работы[ | ]

Инертный газ ксенон подается через металлический кольцевой анод с отверстиями в двустенную (кольцевую) керамическую газоразрядную камеру, на выходе которой установлен полый газоразрядный (работающий также на ксеноне) катод-компенсатор для эмиссии электронов. В керамической газоразрядной камере внутренний и наружный полюса электромагнита создают радиальное магнитное поле в несколько сотен Гаусс, нарастающее вдоль камеры и быстро спадающее за её пределами. Если между анодом и катодом-компенсатором приложить постоянное напряжение в несколько сотен Вольт, то в газоразрядном канале зажигается разряд и ксенон ионизируется, создавая плазму. Тяжёлые ионы ксенона ускоряются электрическим полем вдоль канала, почти не отклоняясь слабым магнитным полем, и набирают энергию несколько меньшую, чем приложенное напряжение. Электроны же, напротив, не могут свободно перемещаться вдоль канала, поскольку их ларморовский радиус очень мал. Впрочем, из-за коллективных процессов в плазме электроны всё же составляют небольшую часть разрядного тока. Основной же ток разряда переносят ионы ксенона. Поток ускоренных ионов, вылетающих из газоразрядной камеры, создаёт реактивную тягу двигателя. Вместе с ионами из плазменного двигателя уходит равный им по величине поток электронов из катода-компенсатора[3][уточните ссылку (уже 68 дней)].

См. также[ | ]

Примечания[ | ]

  1. Электрический ракетный двигатель // Экслибрис — Яя. — М. : Советская энциклопедия, 1978. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 30).
  2. Журнал Космические исследования, том XII, в.3, стр.461
  3. Журнал Технической физики, том XLII, в.1, стр.54

Ссылки[ | ]

encyclopaedia.bid

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *