Размеры вселенной составляют примерно – Размер вселенной. Знаете ли вы о том, что наблюдаемая нами вселенная имеет довольно определённые границы?

Содержание

Размер Вселенной

Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы? Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос.

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры?

Граница безграничного

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют?

Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то».

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд. Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным? Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной.

Расширяя границы

Инфографика «Вселенная» Посмотреть в большом разрешении

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной.

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции.

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере. В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм».

Множество Солнц

Вега, снимок ESO

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения.

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс α Лиры. Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления.

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во Вселенной.

Множество Млечных Путей

Млечный путь

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Не смотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути.

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью цефеид. Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути.

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки.

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами (войдами) и составляют крупномасштабную структуру, известной на данный момент, Вселенной.

Очевидная бесконечность

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе.

Эволюция Вселенной

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты.

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину».

Стационарная Вселенная

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов.

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь.

На поверхности гиперсферы

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует.

Будущее Вселенной

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии.

Расширяющаяся Вселенная

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным. В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную.

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения.

Дальнейшее развитие космологии

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году реликтового излучения подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна.

Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима.

Из чего состоит Вселенная

Наконец, в 1998 в ходе исследования расстояния до сверхновых типа Ia было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной. Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия тёмной энергии – гипотетическое поле, содержащее большую часть массы Вселенной.

Современное представление о размере наблюдаемой Вселенной

Современная модель Вселенной также называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Эволюция Вселенной

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 м/c). Получается, наблюдатель видит не просто объект, а его прошлое. Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Другую картину мы имеем с современной моделью Вселенной. Согласно ей Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 миллиардах св. лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

За горизонтом

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. св. лет). Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является реликтовое излучение. Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Истинные границы

Материалы по теме

То, имеет ли Вселенная истинные, не наблюдаемые границы, до сих пор остаётся предметом псевдонаучных догадок. Так или иначе, все сходятся на бесконечности Вселенной, но интерпретируют эту бесконечность совсем по-разному. Одни считают Вселенную многомерной, где наша «местная» трёхмерная Вселенная является лишь одним из её слоёв. Другие говорят, что Вселенная фрактальна – а это означает, что наша местная Вселенная может оказаться частицей другой. Не стоит забывать и о различных моделях Мультивселенной с её закрытыми, открытыми, параллельными Вселенными, червоточинами. И ещё много-много различных версий, число которых ограничено лишь человеческой фантазией.

Но если включить холодный реализм или просто отстраниться от всех этих гипотез, то можно предположить, что наша Вселенная является бесконечным однородным вместилищем всех звёзд и галактик. Причем, в любой очень далёкой точке, будь она в миллиардах гигапарсек от нас, всё условия будут точно такими же. В этой точке будут точно такими же горизонт частиц и сфера Хаббла с таким же реликтовым излучением у их кромки. Вокруг будут такие же звёзды и галактики. Что интересно, это не противоречит расширению Вселенной. Ведь расширяется не просто Вселенная, а само её пространство. То, что в момент большого взрыва Вселенная возникла из одной точки говорит только о том, что бесконечно мелкие (практические нулевые) размеры, что были тогда, сейчас превратились в невообразимо большие. В дальнейшем будем пользоваться именно этой гипотезой для того, что наглядно осознать масштабы наблюдаемой Вселенной.

Наглядное представление

В различных источниках приводятся всевозможные наглядные модели, позволяющие людям осознать масштабы Вселенной. Однако нам мало осознать, насколько велик космос. Важно представлять, каким образом проявляют такие понятия, как горизонт Хаббла и горизонт частиц на самом деле. Для этого давайте поэтапно вообразим свою модель.

Забудем о том, что современная наука не знает о «заграничной» области Вселенной. Отбросив версии о мультивселенных, фрактальной Вселенной и прочих её «разновидностях», представим, что она просто бесконечна. Как отмечалось ранее, это не противоречит расширению её пространства. Разумеется, учтём то, что её сфера Хаббла и сфера частиц соответственно равны 13,75 и 45,7 млрд световых лет.

Масштабы Вселенной


Нажмите кнопку СТАРТ и откройте для себя новый, неизведанный мир!
Для начала попробуем осознать, насколько велики Вселенские масштабы. Если вы путешествовали по нашей планете, то вполне можете представить, насколько для нас велика Земля. Теперь представим нашу планету как гречневую крупицу, которая движется по орбите вокруг арбуза-Солнца размером с половину футбольного поля. В таком случае орбита Нептуна будет соответствовать размеру небольшого города, область облака Оорта – Луне, область границы воздействия Солнца – Марсу. Получается, наша Солнечная Система настолько же больше Земли, насколько Марс больше гречневой крупы! Но это только начало.

Теперь представим, что этой гречневой крупой будет наша система, размер которой примерно равен одному парсеку. Тогда Млечный Путь будет размером с два футбольных стадиона. Однако и этого нам будет не достаточно. Придётся и Млечный Путь уменьшить до сантиметрового размера. Она чем-то будет напоминать завёрнутую в водовороте кофейную пенку посреди кофейно-чёрного межгалактическое пространства. В двадцати сантиметрах от неё расположиться такая же спиральная «кроха» — Туманность Андромеды. Вокруг них будет рой малых галактик нашего Местного Скопления. Видимый же размер нашей Вселенной будет составлять 9,2 километра. Мы подошли к понимаю Вселенских размеров.

Внутри вселенского пузыря

Однако нам мало понять сам масштаб. Важно осознать Вселенную в динамике. Представим себя гигантами, для которых Млечный Путь имеет сантиметровым диаметр. Как отмечалось только что, мы окажемся внутри шара радиусом 4,57 и диаметром 9,24 километров. Представим, что мы способны парить внутри этого шара, путешествовать, преодолевая за секунду целые мегапарсеки. Что мы увидим в том случае, если наша Вселенная будет бесконечна?

Материалы по теме

Разумеется, пред нами предстанет бесчисленное множество всевозможных галактик. Эллиптические, спиральные, иррегулярные. Некоторые области будут кишить ими, другие – пустовать. Главная особенность будет в том, что визуально все они будут неподвижны, пока неподвижными будем мы. Но стоит нам сделать шаг, как и сами галактики придут в движение. К примеру, если мы будем способны разглядеть в сантиметровом Млечном Пути микроскопическую Солнечную Систему, то сможем пронаблюдать её развитие. Отдалившись от нашей галактики на 600 метров, мы увидим протозвезду Солнце и протопланетный диск в момент формирования. Приближаясь к ней, мы увидим, как появляется Земля, зарождается жизнь и появляется человек. Точно также мы будем видеть, как видоизменяются и перемещаются галактики по мере того, как мы будем удаляться или приближаться к ним.

Следовательно, чем в более далёкие галактики мы будем вглядываться, тем более древними они будут для нас. Так самые далёкие галактики будут расположены от нас дальше 1300 метров, а на рубеже 1380 метров мы будем видеть уже реликтовое излучение. Правда, это расстояние для нас будет мнимым. Однако, по мере того, как будем приближаться к реликтовому излучению, мы будем видеть интересную картину. Естественно, мы будем наблюдать то, как из первоначального облака водорода будут образовываться и развиваться галактики. Когда же мы достигнем одну из этих образовавшихся галактик, то поймем, что преодолели вовсе не 1,375 километров, а все 4,57.

Уменьшая масштабы

В качестве итога мы ещё больше увеличимся в размерах. Теперь мы можем разместить в кулаке целые войды и стены. Так мы окажемся в довольно небольшом пузыре, из которого невозможно выбраться. Мало того, что расстояние до объектов на краю пузыря будет увеличиваться по мере их приближения, так ещё и сам край будет бесконечно смещаться. В этом и заключается вся суть размера наблюдаемой Вселенной.

Какой бы Вселенная не была большой, для наблюдателя она всегда останется ограниченным пузырём. Наблюдатель всегда будет в центре этого пузыря, фактически он и есть его центр. Пытаясь добраться до какого-либо объекта на краю пузыря, наблюдатель будет смещать его центр. По мере приближения к объекту, этот объект всё дальше будет отходить от края пузыря и в тоже время видоизменяться. К примеру – от бесформенного водородного облачка он превратится в полноценную галактику или дальше галактическое скопление. Ко всему прочему, путь до этого объекта будет увеличиваться по мере приближения к нему, так как будет меняться само окружающее пространство. Добравшись до этого объекта, мы лишь сместим его с края пузыря в его центр. На краю Вселенной всё также будет мерцать реликтовое излучение.

Если предположить, что Вселенная и дальше будет расширяться ускоренно, то находясь в центре пузыря и мотая время на миллиарды, триллионы и даже более высокие порядки лет вперёд, мы заметим ещё более интересную картину. Хотя наш пузырь будет также увеличиваться в размерах, его видоизменяющиеся составляющие будут отдаляться от нас ещё быстрее, покидая край этого пузыря, пока каждая частица Вселенной не будет разрозненно блуждать в своём одиноком пузыре без возможности взаимодействовать с другими частицами.

Итак, современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но мы точно знаем о том, что наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли на сжатие, остаётся открытым.


comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 14721

spacegid.com

Каковы размеры Вселенной? — Mydiscoveries.ru

  • История
    • Быт и жизненный уклад
    • Войны
    • Изобретения
    • Личности
    • События
  • Мифы
  • Моя планета
    • Общество, культура, традиции
    • Удивительные места
    • Флора и фауна
    • Явления
  • Наука
    • Археология
    • Естественные науки
    • Космос
    • Технологии
  • Рекорды
  • В мире
    • Животные
    • Люди
    • Новости
    • Открытия

Поиск

Интересные статьи, новости, факты — MyDiscoveries.ru
  • История
    • ВсеБыт и жизненный укладВойныИзобретенияЛичностиСобытия

      Модная римская обувь возрастом 2000 лет

      Откуда в русском языке появился мат?

      Шер Ами — голубь-герой, получивший боевую награду

      Уинстон Черчилль хотел построить авианосец изо… льда

  • Мифы
    • Правда, что если хрустеть суставами, можно заработать артрит?

      Правда, что мухомор убивает мух?

      Правда ли, что носороги топчут огонь?

      «Правило пяти секунд» — правда или вымысел?

      Правда ли, что акулам не нравится вкус человека?

  • Моя планета
    • ВсеОбщество, культура, традицииУдивительные местаФлора и фаунаЯвления

      Почему в Тихом океане часто возникают ураганы и тайфуны?

      «Драгоценности в ночном море» — фотографии планктона у побережья Японии

      Ученые показали на видео, как растения передают сигнал о нападении

      Почему радиация ассоциируется с зеленым цветом?

  • Наука

mydiscoveries.ru

Как получилось, что размер Вселенной больше её возраста? / Хабр


Природа требует, чтобы мы не превышали скорость света. Всё остальноё опционально.
— Роберт Бролт

Одно из самых удивительных открытий XX века произошло благодаря изучению огромных спиральных туманностей, рассыпанных по ночному небу.

Быстро выяснилось, что эти объекты – галактики, похожие на наш Млечный путь, находящиеся в тысячах световых лет от нас. Кроме того, большая их часть двигается по направлению от нас. Что ещё более интересно, так это то, что чем дальше от нас галактика, тем (в среднем) она быстрее удаляется. Всего через несколько лет были открыты и механизм и закон, управляющие этим явлением.

С законом сложностей не было: вы измеряете скорость движения галактики, исходя из спектрального сдвига и прикидываете расстояние до неё при помощи различных методов, включая стандартные свечи. В итоге – хотя у вас останутся погрешности – вы получите данные об удалении галактик и о скорости их убегания. Взаимосвязь между двумя этими параметрами известна, как закон Хаббла и он определяет, как удалённые галактики двигаются относительно нас.

Механизм происходящего явления оказался более интересным.

Существует сильное искушение предположить, что причина наблюдаемого явления – более удалённые объекты удаляются быстрее – находится в некоем взрыве, случившемся в прошлом. Если бы это было так, то галактики, получившие меньше «начальной энергии взрыва» были бы ближе друг к другу и разлетались бы друг от друга медленнее, а галактики, удалённые от нас, получили бы больше энергии, чтобы разлетаться с такой большой скоростью.

Если бы это было так, то мы бы находились очень близко от центра взрыва, и плотность галактик рядом с нами была бы гораздо выше, чем далеко от нас. В этом случае пространство было бы статичным – типа фиксированной трёхмерной решётки. Но это не единственная возможность.

Также возможно, что вместо того, чтобы статичная Вселенная брала начало от взрыва, она могла бы подчиняться более мощному решению ОТО: она может расширяться! Вместо того, чтобы начаться благодаря катастрофическому взрыву в статичной Вселенной, ткань космоса может расширяться со временем, пропорционально количеству содержащейся в ней энергии.

В этом случае количество галактик должно быть в среднем одинаковым в одинаковых объёмах пространства, скорость расширения должна увеличиваться по предсказуемой зависимости от расстояния, Вселенная должна была быть более горячей в прошлом и скопление галактик должно было сформировать паутинообразную структуру, в которой все регионы космоса выглядят примерно одинаково на больших масштабах.

В случае первого варианта, со взрывом и статическим пространством и в случае конечного возраста Вселенной мы могли бы заглядывать вдаль на расстояние, определяемое этим возрастом. В статичной Вселенной возрастом в 5 лет мы могли бы увидеть свет, пришедший от объектов, расположенных не далее 5 световых лет от нас. В статичной Вселенной возрастом в 13,8 миллиарда лет мы могли бы увидеть свет, пришедший от объектов, расположенных не далее 13,8 миллиарда световых лет от нас.

Но все наши наблюдения опровергают эту возможность и направляют нас к идее о расширяющемся пространстве, в котором содержание энергии во Вселенной определяет скорость расширения и, следовательно, как далеко объекты находятся от нас.

Что менее интуитивно, так это то, что в расширяющейся Вселенной мы можем видеть дальше, чем это определяет её простой возраст! Это просто обязательно. Подумайте над диаграммой выше, в которой несколько скоплений галактик удаляются друг от друга из-за расширения Вселенной. Представьте, что мы находимся в центральном скоплении и наблюдаем скопление в нижнем левом углу.

Когда свет покидает скопление в левом нижнем углу (слева), это скопление находится в 87 световых годах от нас. Свет начинает свой путь по направлению к нам, но Вселенная расширяется. То есть пространство между этим скоплением и нашим увеличивается, как выпекающийся кусок теста, будущий хлеб. Свет продолжает идти к нам, но с увеличением расстояния ему приходится пройти более 87 световых лет, чтобы достичь нас. Но когда свет доходит до места назначения (справа), это скопление уже находится в 173 световых годах от нас.

Ключевой вопрос: какое же расстояние прошёл свет на самом деле? Ответ – больше 87 световых лет, но меньше 173 световых лет!

Применим этот принцип ко всей Вселенной.

13,8 миллиарда лет назад Вселенная была нереально горячей и плотной и была наполнена огромным разнообразием источников энергии: излучением (фотоны), материей (протоны, нейтроны, электроны) и присущей пространству энергией (тёмная энергия). Если бы расширяющаяся Вселенная была наполнена только одним из этих трёх типов энергии, и вы задали бы вопрос, как далеко находится объект, свет от которого только сейчас дошёл до нас, вы получили бы три разных ответа. Почему?

Потому, что плотность энергии в любой момент истории определяет историю расширения Вселенной, и излучение, материя и присущая пространству энергия эволюционируют по-разному! И вот вам итоговый результат для Вселенной возрастом 13,8 миллиарда лет:

Если бы Вселенная была наполнена лишь излучением, объект, чей свет только сейчас дошёл бы до нас после путешествия длительностью в 13,8 млрд лет, находился бы на расстоянии 27,6 млрд световых лет от нас.
Если бы Вселенная была наполнена лишь материей, объект, чей свет только сейчас дошёл бы до нас после путешествия длительностью в 13,8 млрд лет, находился бы на расстоянии 41,4 млрд световых лет от нас.
Если бы Вселенная была наполнена лишь тёмной энергией, никакой свет до нас бы вообще не дошёл, поскольку расширение было бы экспоненциальным и по прошествии такого времени мы бы просто ничего не увидели.

Но ни один из этих примеров не соответствует реальной Вселенной, в которой перемешаны эти энергии и эта смесь меняется со временем.

На ранних стадиях Вселенной в первые несколько тысяч лет доминировало излучение, преимущественно в виде фотонов и нейтрино. Потом случился фазовый переход и материя (нормальная и тёмная) стала преобладающей компонентой на миллиарды лет. И совсем недавно, уже после формирования Солнечной системы и Земли, тёмная энергия стала доминантой. Поскольку тёмная энергия не была (и не будет) единственным источником энергии Вселенной, мы никогда не окажемся в ситуации, в которой свет до нас не дойдёт. Но её достаточно, чтобы раздвинуть границы Вселенной дальше, чем в варианте с одной только материей: до 46,1 миллиарда световых лет.

Это контринтуитивно, но нужно помнить: 13,8 миллиарда лет назад вся наблюдаемая Вселенная была меньше, чем наша сегодняшняя Солнечная система!

Расширение Вселенной началось очень быстро и со временем замедлялось. Оно продолжает замедляться, но оно асимптотически стремится не к нулю, а к конечной, хотя и большой, величине. Это означает, что свет от очень удалённого объекта, унесённого расширением Вселенной больше, чем на 40 млрд световых лет от нас, может дойти до нас сегодня, совершив по Вселенной путешествие, сравнимое со всей историей её существования.

И когда он дойдёт до нас, мы увидим свет, испущенный в то время, когда Вселенная была чрезвычайно молода.

Разница лишь в спектральном красном смещении, которое позволяет нам определить возраст и удалённость этого объекта.

Вот почему во Вселенной возрастом в 13,8 миллиарда лет наиболее удалённые из видимых объектов находятся на расстоянии в 46 миллиардов световых лет от нас!

habr.com

Размеры вселенной

Так что, исходя из этого, логично думать что наблюдаемая Вселенная должна быть 13,77 X 2 = 27 500 000 000 световых лет в поперечнике. Но это не так! Потому что с течением времени космос расширяется. Те далекие объекты, которые испустили свет 13,8 млрд. лет назад, улетели еще дальше от нас. Сегодня они более чем в 46,5 миллиардах световых лет от нас. Удвоив это, получаем 93 миллиарда световых лет 93 млрд. св. лет.Истинный диаметр наблюдаемой вселенной 93 млрд. св. лет

Представим соразмерность. Земля примерно так же мала по сравнению с наблюдаемой вселенной, как вирус по сравнению с солнечной системой. Правда, это не особо поможет, ведь едва ли мы способны представить размер вируса, да и немыслимые размеры Солнечной системы тоже. Так что давайте скажем просто, что Наблюдаемая Вселенная колоссально велика.

А Целая Вселенная? А целая Вселенная, на сколько мы можем судить — гораздо больше! Космос скорее всего, бесконечен! Или, как минимум у него нет границ, хотя в чем здесь разница?! Но, это уже другая тема…

А как насчет центра Вселенной? Наблюдаемая Вселенная имеет центр — это мы! Мы находимся в центре наблюдаемой Вселенной, потому что наблюдаемая Вселенная — это просто участок космоса видимый нам с Земли.

И подобно тому, как с высокой башни мы видим круглую область с центром в самой башне, также мы видим область космоса с центром от наблюдателя. На самом деле если говорить точнее, КАЖДЫЙ ИЗ НАС — центр своей СОБСТВЕННОЙ Наблюдаемой Вселенной.

Но это не значит, что мы находимся в центре Целой Вселенной, как и башня — отнюдь не центр мира, а только центр того кусочка мира, который с нее видно — до горизонта.

То же и с наблюдаемой Вселенной. Когда мы смотрим в небо, мы видим свет, который 13,8 миллиарда лет летел к нам из мест, которые уже в 46,5 миллиардах световых лет от нас. Мы не видим то, что за горизонтом. Но это еще не значит, что там ничего нет.

Все остальное находится «за горизонтом». Но каждую секунду мы видим новый свет, еще старше, пролетевший еще больше, так что со временем мы буквально видим все больше космоса — нам остается только ждать и наблюдать, как стареет Вселенная и как свет от все более удаленных мест доходит до нас. Итак, вот мы сидим в центре нашего обозримого кусочка Целой Вселенной.

www.contenton.ru

Каковы размеры нашей Вселенной

Насколько велика Вселенная, вряд ли возможно представить. Считается, что самые удалённые объекты находятся на расстоянии в 13,8 млрд. св. лет. Но это только видимая в настоящее время граница. При появлении новых методов и приборов исследований, она постоянно отодвигается. Причём, границы раздвигаются одновременно во все стороны. Это даёт возможность судить о сферической форме Вселенной.

Расстояния до удалённых галактик и галактических скоплений можно вычислить при помощи эффекта Доплера. При видимости галактики под незначительным углом или с ребра, одна часть её к нам приближается, а другая удаляется. Это способствует изменению спектральных линий. По характеру изменения спектральных линии определяются скорость вращения и светимость. А затем и космические расстояние до объекта.

Метод красного смещения позволяет определить, приближается объект к наблюдателю или удаляется от него.После долгих наблюдений  определилась зависимость: галактика удаляется со скоростью, пропорционально расстоянию до неё. Коэффициент этой пропорциональности носит название постоянной Хаббла. Используя метод красных смещений, удалось вычислить расстояния до самых удалённых объектов Вселенной. Это – миллионы и миллиарды световых лет. Фактически, можно увидеть и оценить удалённость тех галактик, которые образовались первыми после Большого взрыва.

Один из самых ярких объектов Вселенной – квазар 3C 345 – удалён от Солнечной системы на 5 млрд. св. лет, а поперечник его – 78 млн. св. лет!

Расстояния в миллиарды световых лет вообразить так же невероятно, как длины в миллионы и тысячи световых лет. Если представить, что мы летим в космическом пространстве со скоростью света, то за свою жизнь, пусть и вековую, сможем преодолеть лишь тысячную часть поперечника нашей галактики. То есть, нам потребуется тысяча жизней, чтобы облететь весь Млечный Путь. Но он – лишь одна из миллиардов галактик. Добраться до Андромеды удастся, если прожить 25 тысяч жизней. И это космос, не очень удалённый.

comments powered by HyperComments

light-science.ru

Размер Вселенной: что говорит наука

Экология жизни. Наука и открытия: Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука…

Знаете ли вы о том, что наблюдаемая нами Вселенная имеет довольно определённые границы?

Мы привыкли ассоциировать Вселенную с чем-то бесконечным и непостижимым. Однако современная наука на вопрос о «бесконечности» Вселенной предлагает совсем другой ответ на столь «очевидный» вопрос. 

Согласно современным представлениям, размер наблюдаемой Вселенной составляет примерно 45,7 миллиардов световых лет (или 14,6 гигапарсек). Но что означают эти цифры? 


 

Граница безграничного 

Первый вопрос, который приходит в голову обычному человеку – как Вселенная вообще не может быть бесконечной? Казалось бы, бесспорным является то, что вместилище всего сущего вокруг нас не должно иметь границ. Если эти границы и существуют, то что они вообще собой представляют? 


Допустим, какой-нибудь астронавт долетел до границ Вселенной. Что он увидит перед собой? Твёрдую стену? Огненный барьер? А что за ней – пустота? Другая Вселенная? Но разве пустота или другая Вселенная могут означать, что мы на границе мироздания? Ведь это не означает, что там находится «ничего». Пустота и другая Вселенная – это тоже «что-то». А ведь Вселенная – это то, что содержит абсолютно всё «что-то»

Мы приходим к абсолютному противоречию. Получается, граница Вселенной должна скрывать от нас что-то, чего не должно быть. Или граница Вселенной должна отгораживать «всё» от «чего-то», но ведь это «что-то» должно быть также частью «всего». В общем, полный абсурд.

Тогда как учёные могут заявлять о граничном размере, массе и даже возрасте нашей Вселенной? Эти значения хоть и невообразимо велики, но всё же конечны. Наука спорит с очевидным?

Чтобы разобраться с этим, давайте для начала проследим, как люди пришли к современному понимаю Вселенной. 

Расширяя границы 

 

Человек с незапамятных времён интересовался тем, что представляет собой окружающий их мир. Можно не приводить примеры о трёх китах и прочие попытки древних объяснить мироздание. Как правило, в конечном итоге все сводилось к тому, что основой всего сущего является земная твердь. Даже во времена античности и средневековья, когда астрономы имели обширные познания в закономерностях движения планет по «неподвижной» небесной сфере, Земля оставалась центром Вселенной. 

Естественно, ещё в Древней Греции существовали те, кто считал то, что Земля вращается вокруг Солнца. Были те, кто говорил о множестве миров и бесконечности Вселенной. Но конструктивные обоснования этим теориям возникли только на рубеже научной революции. 

В 16 веке польский астроном Николай Коперник совершил первый серьёзный прорыв в познании Вселенной. Он твёрдо доказал, что Земля является лишь одной из планет, обращающихся вокруг Солнца. Такая система значительно упрощала объяснение столь сложного и запутанного движения планет по небесной сфере.

В случае неподвижной Земли астрономам приходилось выдумывать всевозможные хитроумные теории, объясняющие такое поведение планет. С другой стороны, если Землю принять подвижной, то объяснение столь замысловатым движениям приходит, само собой. Так в астрономии укрепилась новая парадигма под названием «гелиоцентризм». 

Множество Солнц 

 

Однако даже после этого астрономы продолжали ограничивать Вселенную «сферой неподвижных звёзд». Вплоть до 19 века им не удавалось оценить расстояние до светил. Несколько веков астрономы безрезультатно пытались обнаружить отклонения положения звёзд относительно движения Земли по орбите (годичные параллаксы). Инструменты тех времён не позволяли проводить столь точные измерения. 

Наконец, в 1837 году русско-немецкий астроном Василий Струве измерил параллакс α Лиры. Это ознаменовало новый шаг в понимании масштабов космоса. Теперь учёные могли смело говорить о том, что звезды являют собой далекие подобия Солнца. И наше светило отныне не центр всего, а равноправный «житель» бескрайнего звёздного скопления. 

Астрономы ещё больше приблизились к пониманию масштабов Вселенной, ведь расстояния до звёзд оказались воистину чудовищными. Даже размеры орбит планет казались по сравнению с этим чем-то ничтожным. Дальше нужно было понять, каким образом звёзды сосредоточены во Вселенной

Множество Млечных Путей 

 

Известный философ Иммануил Кант ещё в 1755 предвосхитил основы современного понимания крупномасштабной структуры Вселенной. Он выдвинул гипотезу о том, что Млечный Путь является огромным вращающимся звёздным скоплением. В свою очередь, многие наблюдаемые туманности также являются более удалёнными «млечными путями» — галактиками. Несмотря на это, вплоть до 20 века астрономы придерживались того, что все туманности являются источниками звёздообразования и входят в состав Млечного Пути. 

Ситуация изменилась, когда астрономы научились измерять расстояния между галактиками с помощью цефеид. Абсолютная светимость звёзд такого типа лежит в строгой зависимости от периода их переменности. Сравнивая их абсолютную светимость с видимой, можно с высокой точностью определить расстояние до них. Этот метод был разработан в начале 20 века Эйнаром Герцшрунгом и Харлоу Шелпи. Благодаря ему советский астроном Эрнст Эпик в 1922 году определил расстояние до Андромеды, которое оказалось на порядок больше размера Млечного Пути. 

Эдвин Хаббл продолжил начинание Эпика. Измеряя яркости цефеид в других галактиках, он измерил расстояние до них и сопоставил его с красным смещением в их спектрах. Так в 1929 году он разработал свой знаменитый закон. Его работа окончательно опровергла укрепившееся мнение о том, что Млечный Путь является краем Вселенной. Теперь он был одной из множества галактик, которые ещё когда-то считали его составной частью. Гипотеза Канта подтвердилась почти через два столетия после её разработки. 

В дальнейшем, открытая Хабблом связь расстояния галактики от наблюдателя относительно скорости её удаления от него, позволило составить полноценную картину крупномасштабной структуры Вселенной. Оказалось, галактики были лишь её ничтожной частью. Они связывались в скопления, скопления в сверхскопления. В свою очередь, сверхскопления складываются в самые большие из известных структур во Вселенной – нити и стены. Эти структуры, соседствуя с огромными сверхпустотами (войдами) и составляют крупномасштабную структуру, известной на данный момент, Вселенной.


Очевидная бесконечность 

 

Из вышесказанного следует то, что всего за несколько веков наука поэтапно перепорхнула от геоцентризма к современному пониманию Вселенной. Однако это не даёт ответа, почему мы ограничиваем Вселенную в наши дни. Ведь до сих пор речь шла лишь о масштабах космоса, а не о самой его природе. 

Первым, кто решился обосновать бесконечность Вселенной, был Исаак Ньютон. Открыв закон всемирного тяготения, он полагал, что будь пространство конечно, все её тела рано или поздно сольются в единое целое. До него мысль о бесконечности Вселенной если кто-то и высказывал, то исключительно в философском ключе. Без всяких на то научных обоснований. Примером тому является Джордано Бруно. К слову, он подобно Канту, на много столетий опередил науку. Он первым заявил о том, что звёзды являются далёкими солнцами, и вокруг них тоже вращаются планеты. 

Казалось бы, сам факт бесконечности довольно обоснован и очевиден, но переломные тенденции науки 20 века пошатнули эту «истину». 

Стационарная Вселенная 

 

Первый существенный шаг на пути к разработке современной модели Вселенной совершил Альберт Эйнштейн. Свою модель стационарной Вселенной знаменитый физик ввёл в 1917 году. Эта модель была основана на общей теории относительности, разработанной им же годом ранее. Согласно его модели, Вселенная является бесконечной во времени и конечной в пространстве. Но ведь, как отмечалось ранее, согласно Ньютону Вселенная с конечным размером должна сколлапсироваться. Для этого Эйнштейн ввёл космологическую постоянную, которая компенсировала гравитационное притяжение далёких объектов. 

Как бы это парадоксально не звучало, саму конечность Вселенной Эйнштейн ничем не ограничивал. По его мнению, Вселенная представляет собой замкнутую оболочку гиперсферы. Аналогией служит поверхность обычной трёхмерной сферы, к примеру – глобуса или Земли. Сколько бы путешественник ни путешествовал по Земле, он никогда не достигнет её края. Однако это вовсе не означает, что Земля бесконечна. Путешественник просто-напросто будет возвращаться к тому месту, откуда начал свой путь. 

На поверхности гиперсферы 

 

Точно также космический странник, преодолевая Вселенную Эйнштейна на звездолёте, может вернуться обратно на Землю. Только на этот раз странник будет двигаться не по двумерной поверхности сферы, а по трёхмерной поверхности гиперсферы. Это означает, что Вселенная имеет конечный объём, а значит и конечное число звёзд и массу. Однако ни границ, ни какого-либо центра у Вселенной не существует. 

К таким выводам Эйнштейн пришёл, связав в своей знаменитой теории пространство, время и гравитацию. До него эти понятия считались обособленными, отчего и пространство Вселенной было сугубо евклидовым. Эйнштейн доказал, что само тяготение является искривлением пространства-времени. Это в корне меняло ранние представления о природе Вселенной, основанной на классической ньютоновской механике и евклидовой геометрии. 

Расширяющаяся Вселенная 

 

Даже сам первооткрыватель «новой Вселенной» не был чужд заблуждений. Эйнштейн хоть и ограничил Вселенную в пространстве, он продолжал считать её статичной. Согласно его модели, Вселенная была и остаётся вечной, и её размер всегда остаётся неизменным.

В 1922 году советский физик Александр Фридман существенно дополнил эту модель. Согласно его расчётам, Вселенная вовсе не статична. Она может расширяться или сжиматься со временем. Примечательно то, Фридман пришёл к такой модели, основываясь на всё той же теории относительности. Он сумел более корректно применить эту теорию, минуя космологическую постоянную. 

Альберт Эйнштейн не сразу принял такую «поправку». На помощь этой новой модели пришло, упомянутое ранее открытие Хаббла. Разбегание галактик бесспорно доказывало факт расширения Вселенной. Так Эйнштейну пришлось признать свою ошибку. Теперь Вселенная имела определённый возраст, который строго зависит от постоянной Хаббла, характеризующей скорость её расширения. 


 

Дальнейшее развитие космологии 

По мере того, как учёные пытались решить этот вопрос, были открыты многие другие важнейшие составляющие Вселенной и разработаны различные её модели. Так в 1948 году Георгий Гамовов ввёл гипотезу «о горячей Вселенной», которая в последствие превратится в теорию большого взрыва. Открытие в 1965 году реликтового излучения подтвердило его догадки. Теперь астрономы могли наблюдать свет, дошедший с того момента, когда Вселенная стала прозрачна. 


Тёмная материя, предсказанная в 1932 году Фрицом Цвикки, получила своё подтверждение в 1975 году. Тёмная материя фактически объясняет само существование галактик, галактических скоплений и самой Вселенской структуры в целом. Так учёные узнали, что большая часть массы Вселенной и вовсе невидима

Также интересно: Наша Вселенная намного, намного проще, чем кажется  

Выросла вероятность того, что наша Вселенная — голограмма

Наконец, в 1998 в ходе исследования расстояния до сверхновых типа Ia было открыто, что Вселенная расширяется с ускорением. Этот очередной поворотный момент в науке породил современное понимание о природе Вселенной.

Введённый Эйнштейном и опровергнутый Фридманом космологический коэффициент снова нашёл своё место в модели Вселенной. Наличие космологического коэффициента (космологической постоянной) объясняет её ускоренное расширение. Для объяснения наличия космологической постоянной было введено понятия тёмной энергии – гипотетическое поле, содержащее большую часть массы Вселенной. опубликовано econet.ru

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

econet.ru

от Млечного пути до Метагалактики :: SYL.ru

Каждый из нас хотя бы раз задумывался, в каком огромном мире мы живем. Наша планета — это безумное количество городов, сел, дорог, лесов, рек. Большинство за свою жизнь не успевает увидеть и половины. Представить грандиозные масштабы планеты сложно, но есть задача еще тяжелее. Размеры Вселенной — вот что, пожалуй, не под силу вообразить даже самому развитому уму. Попробуем разобраться, что думает на этот счет современная наука.

Основное понятие

Вселенная — это все, что нас окружает, о чем мы знаем и догадываемся, что было, есть и будет. Если снизить накал романтизма, то этим понятием определяется в науке все, существующее физически, с учетом временного аспекта и законов, регулирующих функционирование, взаимосвязь всех элементов и так далее.

Естественно, представить себе реальные размеры Вселенной достаточно трудно. В науке этот вопрос является широко обсуждаемым и единого мнения пока нет. В своих предположениях астрономы опираются на существующие теории формирования мира, каким мы его знаем, а также на полученные в результате наблюдения данные.

Метагалактика

Различные гипотезы определяют Вселенную как безразмерное или невыразимо огромное пространство, о большей части которого мы мало что знаем. Для внесения ясности и возможности обсуждения области, доступной для изучения, было введено понятие Метагалактика. Этот термин обозначает часть Вселенной, доступной для наблюдения астрономическими методами. Благодаря совершенствованию техники и знаний она постоянно увеличивается. Метагалактика является частью так называемой наблюдаемой Вселенной — пространства, в котором материя за период своего существования успела достигнуть современного положения. Когда речь заходит о понимании того, каковы размеры Вселенной, в большинстве случаев говорят о Метагалактике. Современный уровень развития техники позволяет наблюдать объекты, расположенные на расстоянии до 15 млрд световых лет от Земли. Время в определении этого параметра играет, как видно, не меньшую роль, чем пространство.

Возраст и размеры

Согласно некоторым моделям Вселенной, она никогда не появлялась, а существует вечно. Однако главенствующая сегодня теория Большого взрыва задает нашему миру «отправную точку». По представлениям астрономов, возраст Вселенной — примерно 13,7 млрд лет. Если переместиться назад во времени, то можно вернуться к Большому взрыву. Независимо от того, бесконечны ли размеры Вселенной, наблюдаемая ее часть имеет границы, поскольку конечна скорость света. В нее входят все те местоположения, которые могут оказывать воздействие на земного наблюдателя со времени Большого взрыва. Размеры наблюдаемой Вселенной увеличиваются благодаря ее постоянному расширению. По последним оценкам, она занимает пространство в 93 миллиарда световых лет.

Множество

Посмотрим, что представляет собой Вселенная. Размеры космического пространства, выраженные в сухих цифрах, конечно, поражают, но трудны для понимания. Для многих будет проще осознать масштабы окружающего мира, если они узнают, сколько систем, подобных Солнечной, умещается в нем.

Наша звезда и окружающие ее планеты лишь крохотная часть Млечного пути. По данным астрономов, Галактика насчитывает примерно 100 миллиардов звезд. У некоторых из них уже обнаружены экзопланеты. Поражают не только размеры Вселенной — уже пространство, занимаемое ее ничтожной частью, Млечным Путем, внушает уважение. Свету для того чтобы пройти нашу галактику, требуется сто тысяч лет!

Местная группа

Внегалактическая астрономия, которая начала развиваться после открытий Эдвина Хаббла, описывает множество структур, схожих с Млечным путем. Ближайшие его соседи — это Туманность Андромеды и Большое и Малое Магеллановы Облака. Вместе с еще несколькими «спутниками» они составляют местную группу галактик. От соседнего аналогичного формирования ее отделяет приблизительно 3 млн световых лет. Даже страшно представить, сколько потребовалось бы современному самолету времени, чтобы преодолеть такое расстояние!

Наблюдаемые

Все местные группы разделены обширным пространством. Метагалактика включает несколько миллиардов структур, аналогичных Млечному пути. Размеры Вселенной действительно поражают. Световому лучу для преодоления расстояния от Млечного пути до Туманности Андромеды требуется 2 млн лет.

Чем дальше от нас расположен участок космоса, тем меньше мы знаем о его современном состоянии. Из-за конечности скорости света ученые могут получить информацию только о прошлом таких объектов. По тем же причинам, как уже было сказано, область Вселенной, доступной для астрономических изысканий, ограничена.

Другие миры

Однако это еще не все поражающее воображения сведения, которыми характеризуется Вселенная. Размеры космического пространства, по-видимому, значительно превосходят Метагалактику и наблюдаемую часть. Теория инфляции вводит такое понятие, как Мультивселенная. Она состоит из множества миров, вероятно, образовавшихся одновременно, не пересекающихся друг с другом и развивающихся независимо. Современный уровень развития техники не дает надежды на познание подобных соседних Вселенных. Одна из причин — все та же конечность скорости света.

Быстрое развитие науки о космосе меняет наше представление о том, каких размеров Вселенная. Современное состояние астрономии, составляющие ее теории и выкладки ученых трудны для понимания непосвященного человека. Однако даже поверхностное изучение вопроса показывает, насколько огромен мир, частью которого мы являемся, и как мало о нем мы еще знаем.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *