Сколько весит луна, сколько весит человек на Луне, характеристики Луны
Масса Луны в среднем составляет около 7,3477 х 1022 кг.
Луна — единственный спутник Земли и ближайшее к ней небесное тело. Источником свечения Луны является Солнце, поэтому мы всегда наблюдаем только лунную часть, обращенную к великому светилу. Вторая половинка Луны в это время погружена в космическую тьму, ожидая своей очереди выйти «на свет». Расстояние между Луной и Землей составляет примерно 384467 км. Итак, сегодня мы узнаем, сколько весит Луна по сравнению с другими «обитателями» Солнечной системы, а также изучим интересные факты об этом таинственном земном спутнике.
Почему Луна так называется?
Древние римляне Луной называли богиню ночного света, именем которой со временем нарекли само ночное светило. Согласно другим источникам, слово «луна» имеет индоевропейские корни и означает «светлая» — и не зря, ведь по яркости земной спутник находится на втором месте после Солнца. В древнегреческом языке звезду, светящую холодным желтоватым светом на ночном небосводе, называли именем богини Селены.
Что такое вес Луны?
Луна весит около 7,3477 х 1022 кг.
Действительно, в физическом плане такого понятия, как «вес планеты» не существует. Ведь весом считается сила воздействия тела на горизонтальную поверхность. Как вариант – если тело подвешено на вертикальную нить, то его весом является сила растяжения телом этой нити. Понятно, что Луна не расположена на поверхности и не находится в «подвешенном» состоянии. Так что, с физической точки зрения, Луна не имеет веса. Поэтому, будет уместнее говорить о массе этого небесного тела.
Вес Луны и ее движение – какая взаимосвязь?
Издавна люди пытались разгадать «тайну» движения спутника Земли. Теория движения Луны, впервые созданная американским астрономом Е. Брауном в 1895 году, стала основой современных расчетов. Однако для определения точного движения Луны требовалось знать ее массу, а также различные коэффициенты тригонометрических функций.
Однако благодаря достижениям современной науки появилась возможность провести более точные расчеты. С помощью метода лазерной локации можно определить размер небесного тела с погрешностью всего в пару сантиметров. Так, ученые выявили и доказали, что масса Луны в 81 раз меньше массы нашей планеты, а радиус Земли – в 37 раз больше аналогичного лунного параметра.
Конечно, подобные открытия стали возможны только с наступлением эры космических спутников. А вот ученые эпохи великого «первооткрывателя» закона всемирного тяготения Ньютона определяли массу Луны, исследуя приливы, вызванные периодическими изменениями положения небесного тела относительно Земли.
Луна – характеристики и цифры
Показатель | Значение |
Расстояние между Луной и Землей | 384467 км |
Диаметр экватора | 3476 км |
Период вращения (полный оборот Луны вокруг Земли) | 27,3 дня |
Период смены всех фаз Луны (от фазы новолуния до следующего новолуния) | 29,5 дней |
Температура на поверхности | от -170 до +130 градусов |
- поверхность — 38 млн км2, что составляет примерно 7,4% поверхности Земли
- объем – 22 млрд м3 (2% от величины аналогичного земного показателя)
- средняя плотность – 3,34 г/см3 (у Земли – 5,52 г/см3)
- сила тяжести – равна 1/6 земной
Луна – довольно-таки «тяжелый» небесный спутник, не характерный для планет земного типа. Если сравнить массу всех планетарных спутников, то Луна окажется на пятом месте. Даже Плутон, считавшийся до 2006 года полноправной планетой, по массе меньше Луны более, чем в пять раз. Как известно, Плутон состоит из горных пород и льда, так что его плотность небольшая – примерно 1,7 г/см3. А вот Ганимед, Титан, Каллисто и Ио, являющиеся спутниками планет-гигантов Солнечной системы, превосходят по массе Луну.
Сколько весит человек на Луне?
Известно, что сила тяжести или гравитации любого тела во Вселенной заключается в наличии силы притяжения между разными телами. В свою очередь, величина силы притяжения зависит от массы тел и расстояния между ними. Так, Земля притягивает человека к своей поверхности – а не наоборот, поскольку планета намного больше по размеру. При этом сила земного притяжения равна весу человека. Попробуем увеличить расстояние между центром Земли и человеком в два раза (например, взберемся на гору высотой 6500 км над земной поверхностью). Теперь человек весит в четыре раза меньше!
А вот Луна по массе значительно уступает Земле, следовательно, лунная сила гравитации также меньше силы земного притяжения. Так что астронавты, впервые высадившиеся на лунную поверхность, могли совершать невообразимые прыжки – даже при наличии увесистого скафандра и прочего «космического» снаряжения. Ведь на Луне вес человека уменьшается в целых шесть раз! Самое подходящее место для установления «межпланетных» олимпийских рекордов по прыжкам в высоту.
Итак, теперь мы знаем, сколько весит Луна, ее основные характеристики, а также другие интересные факты о массе этого загадочного земного спутника.
calcsoft.ru
масса Луны, диаметр, особенности движения и исследования :: SYL.ru
Луна – это природный спутник планеты Земля, который считается единственным ближайшим к ней небесным телом. Ученые полагают, что расстояние между Землей и ее спутником составляет порядка 384 тыс. км.
Что нужно знать о спутнике Земли?
Для того чтобы иметь общее представление об этом небесном теле, необходимо рассмотреть ряд его особенностей: это объем спутника, его диаметр, площадь поверхности и масса Луны.
Двигается Луна по эллиптической орбите, и скорость ее движения составляет приблизительно 1,02 км/сек. Если наблюдать за Луной со стороны Северного полюса Земли, то окажется, что она двигается в том же направлении, что и большинство других видимых небесных тел, то есть против часовой стрелки. Сила тяготения на Луне составляет 1,622 м/с².
Многих ученых и астрономов издревле интересовали такие показатели, как удаленность спутника от Земли, его влияние на климат, масса Луны и другие характеристики. Процесс изучения небесных тел, кстати, начался давно.
Изучение Луны в древности
Луна – очень яркое небесное тело, которое просто не могло не привлекать внимание ученых в древние времена. Астрономы еще тысячелетия назад интересовались, чему равна масса Луны, как происходили смены ее фаз.
Ни для кого не секрет, что многие народы даже поклонялись этому небесному телу. Астрономы Древнего Вавилона сумели вычислить смену лунных фаз с большой точностью. Ученые двадцатого века, имеющие в своем оснащении самые современные приборы, поправили это число всего лишь на 0,4 секунды. Но тогда еще не было известно, какова масса Луны и Земли.
Более современные исследования
Луна – самое изученное тело на небосклоне. Ученые разных стран для его исследования запустили около ста спутников. Первым в мире исследовательским аппаратом был запущен советский спутник «Луна-1». Это событие произошло в 1959 году. Тогда исследовательский комплекс смог опуститься на лунную поверхность, взять образцы грунта, передать на Землю фотоснимки, примерно вычислить, какая масса Луны. Помимо этого спутника, Советским Союзом на Лунную поверхность было доставлено также два лунохода. Один из них функционировал почти 10 месяцев, пройдя расстояние в 10 км, а второй – 4 месяца, пройдя 37 км.
Основные показатели Луны
Диаметр Луны – 3474 км. При этом диаметр Земли составляет 12742 км. Иными словами, окружность Луны представляет собой всего лишь 3/11 части от диаметра нашей планеты.
Площадь поверхности спутника Земли составляет 37,9 млн кв. км. В сравнении с показателями планеты, это тоже намного меньше, ведь площадь поверхности Земли составляет 510 млн кв. км. Даже если сравнить лунную поверхность только с земными материками, окажется, что площадь Луны в 4 раза меньше. Объем, который занимает Земля, в 50 раз превосходит лунный.
Немного подробнее о массе Луны
Масса Луны наиболее точным образом была определена с помощью искусственных спутников. Она составляет 7.35*1022 килограмма. Для сравнения, масса Земли составляет 5.9742 × 1024 килограмма.
Масса Луны и Земли постоянно немного меняется. Например, Земля подвержена небольшой метеоритной бомбардировке. За сутки на земную поверхность падает около 5-6 тонн метеоритов. Но при этом Земля теряет больше массы за счет испарения в космическое пространство гелия и водорода из атмосферы. Эти потери уже составляют порядка 200-300 тонн в сутки. У Луны, конечно, таких потерь нет. Средняя плотность вещества на Луне составляет порядка 3,34 г на 1 см3.
Такая величина, как ускорение силы тяжести, на спутнике Земли в 6 раз больше, чем на самой Земле. Плотность тех горных пород, из которых состоит Луна, приблизительно в 60 раз меньше, чем плотность земных. Поэтому масса Луны в 81 раз меньше, чем масса Земли.
Поскольку Луна имеет очень малое притяжение, вокруг нее практически отсутствует атмосфера – здесь нет газовой оболочки и воды в свободном состоянии. Период обращения Луны вокруг земли называется сидерическим, или звездным. Он составляет 27,32166 суток. Но это число подвержено незначительным изменениям с течением времени.
Лунные фазы
Луна не светится самостоятельно. Человек может видеть лишь те ее части, на которые попадают лучи Солнца, отражающиеся от поверхности Земли. Таким образом могут быть объяснены лунные фазы. Луна, двигаясь по своей орбите, проходит между Солнцем и Землей. В это время она обращена к Земле неосвещенной стороной. Этот период называют новолунием. Через 1-3 суток после этого в западной части небосклона можно увидеть небольшой узкий серп — это видимая часть Луны. Примерно через неделю наступает вторая четверть, когда оказывается освещенной ровно половина спутника Земли.
www.syl.ru
Масса Луны. Вопросы остаются. | Лаборатория космических исследований
История оценки массы Луны насчитывает уже сотни лет. Ретроспектива этого процесса изложена в статье зарубежного автора Дэвида У. Хьюза. Перевод этой статьи сделан по мере скромных моих познаний в английском и представлен ниже. Ньютон оценил массу Луны значением вдвое большим принятого ныне за правдоподобное. Правда у каждого своя, а истина одна. Точку в этом вопросе могли бы поставить американцы с маятником на поверхности Луны. Они ведь там были😉. То же могли сделать телеметристы по орбитальным характеристикам LRO и прочих ИСЛ. Жаль, что эта информация пока недоступна.
Обсерватория
Vol.122 2002 апрель No.1167
Измерение массы Луны
Обзор к 125-летию Обсерватории
Дэвид У. Хьюз
Кафедра физики и астрономии, Университет Шеффилда
Первая оценка лунной массы была сделана Исааком Ньютоном. Значение этой величины (массы), а также плотность Луны, с тех пор были предметом обсуждения.
Введение
Масса является одной из наиболее неудобных для измерения величин в астрономическом контексте. Обычно мы измеряем силу воздействия неизвестной массы на известную массу, или наоборот. В истории астрономии не было концепции «масс», скажем, Луны, Земли, и Солнца (MM, МE, МC) до времени Исаака Ньютона (1642 — 1727). После Ньютона, утвердились достаточно точные соотношения масс. Так, например, в первом издании Начал (1687) дано отношение М
Данные по плотности (масса/объем) тела помогает оценить его химический состав. Греки более 2200 лет назад получили достаточно точные значения для размеров и объемов Земли и Луны, но массы была неизвестны, а плотности не могли быть рассчитаны. Таким образом, даже при том, что Луна была похожа на сферу из камня, это не могло быть научно подтверждено. Кроме того, не могли быть предприняты первые научные шаги к выяснению происхождения Луны.
Безусловно, лучший метод определения массы планеты сегодня, в космическую эру, опирается на третий (гармонический) закон Кеплера. Если спутник массой m, вращается вокруг Луны массой МM , то
где а это усредненное по времени среднее расстояние между MM и m, G постоянная тяготения Ньютона, и P — период орбиты. Поскольку МM>>m, это уравнение дает значение MM непосредственно.
Если астронавт может измерять ускорение силы тяжести, GM на поверхности Луны, то
где RM — лунный радиус, параметр, который измерял с разумной точностью еще Аристарх Самосский, около 2290 лет назад.
Исаак Ньютон1 не измерял массу Луны непосредственно, но попытался оценить соотношение между солнечной и лунной массой с использованием измерения морских приливов. Даже при том, что многие люди до Ньютона предполагали, что приливы были связаны с положением и влиянием Луны, Ньютон был первым, кто взглянул на предмет с точки зрения гравитации. Он понял, что приливная сила, создаваемая телом массы М на расстоянии
Осложнения возникли потому, что наибольший прилив был отмечен, когда Солнце было на самом деле в 18.5° от сизигии, а также потому, что лунная орбита не лежит в плоскости эклиптики и имеет эксцентриситет. Принимая все это во внимание, Ньютон на основе своих наблюдений, что “До устья реки Эйвон, в трех милях ниже Бристоля, высота подъема воды в весенних и осенних сизигиях светил (по наблюдениям Samuel Sturmy) составляет около 45 футов, но в квадратурах только 25”, сделал вывод, “что плотность вещества Луны к плотности вещества Земли относится как 4891 к 4000, или как 11 к 9. Следовательно вещество Луны более плотное и более земляное, чем сама Земля”, и “масса вещества Луны будет в массе вещества Земли как 1 в 39.788” (Начала, Книга 3, Предложение 37, Проблема 18).
Поскольку нынешнее значение для соотношения между массой Земли и массы Луны задается как МЕ/MM = 81.300588, ясно, что у Ньютона что-то пошло не так. К тому же значение 3.0 несколько более реалистично, чем 9/5 для отношения высот сизигийного? и квадратурного прилива. Также неточное значение Ньютона для массы Солнца было серьезной проблемой. Обратите внимание, что Ньютон имел очень мало статистической точности, и указание им пяти значащих цифр в значении ME /MM является полностью необоснованным.
Пьер-Симон Лаплас (1749 — 1827) посвятил значительное время для анализа высот приливов (особенно в Бресте), концентрируясь на приливах на четырех основных фазах Луны на обоих солнцестояниях и равноденствиях. Лаплас
Лаплас понял, что приливный подход был одним из многих способов выяснения лунной массы. Тот факт, что вращение Земли осложняет приливные модели, и что конечный продукт расчета был отношение масс Луна / Солнце, явно беспокоило его. Поэтому он сравнил свою приливную силу с результатами измерений, полученными другими методами. Лаплас 4 записывает в дальнейшем коэффициенты МЕ /MM, как 69.2 (с использованием коэффициентов Даламбера), 71.0 (с использованием анализа Маскелина нутации Брэдли и наблюдений параллакса), и 74.2 (с использованием работы Бурга о лунном параллактическом неравенстве). Лаплас, по-видимому, рассматривал каждый результат в равной степени достойным доверия и просто осреднял четыре значения для получения среднего. “La valeur le plus vraisembable de la masse de la lune, qui me parait resulted des divers phenomenes 1/68.5” (ref 4, с. 160). Среднее соотношение МЕ /MM равное 68.5 неоднократно встречается у Лапласа5.
Вполне понятно, что к началу девятнадцатого века, должны были возникнуть сомнения относительно ньютоновского значения 39.788, особенно в умах некоторых британских астрономов, которые были в курсе работ своих французских коллег.
Финлейсон 6 вернулся к приливной методике и при использовании измерения сизигийного? и квадратурного приливов в Дувре за годы 1861, 1864, 1865, и 1866, он получил следующие значения МЕ/MM: 89.870, 88.243, 87.943, и 86.000, соответственно. Феррелом 7 извлечены главные гармоники из девятнадцатилетних приливных данных в Бресте (1812 — 1830) и получено значительно меньшее соотношение МЕ/ МM = 78. Харкнесс 8 приводит приливное значение МЕ/MМ = 78.65.
Так называемый маятниковый метод основан на измерении ускорения от силы тяжести. Возвращаясь к третьему закону Кеплера, с учетом второго закона Ньютона получим
где aМ — усредненное по времени расстояние между Землей и Луной, PM — лунный сидерический период обращения (т.е. длина звездного месяца), gЕ ускорение силы тяжести на поверхности Земли, и RЕ — радиус Земли. Так
Согласно Барлоу и Брайан 9, эта формула была использована Эйри 10 для измерения МЕ/MМ , но была неточна в силу малости этой величины и аккумулировала накопившуюся неопределенность в значениях величин aМ , gЕ , RЕ , и PM.
Когда телескопы стали более совершенными и точность астрономических наблюдений повысилась, стало возможным решить лунное уравнение более точно. Общий центр масс системы Земля /Луна движется вокруг Солнца по эллиптической орбите. И Земля, и Луна вращаются вокруг этого центра масс каждый месяц.
Наблюдатели на Земле, таким образом, видят на протяжении каждого месяца, небольшое смещение на восток и затем небольшое смещение на запад небесной позиции объекта, по сравнению с координатами объекта, которые он имел бы в отсутствии у Земли массивного спутника. Даже с современными инструментами это движение не обнаруживается в случае звезд. Оно может, однако, быть легко измерено для Солнца, Марса, Венеры и астероидов, которые проходят неподалеку, (Эрос, например, в его ближайшей точке находится всего в 60 раз дальше, чем Луна). Амплитуда месячного смещения позиции Солнца составляет около 6,3 секунды дуги. Таким образом
где aC — среднее расстояние между Землей и центром масс системы Земля-Луна (это около 4634 км), и aS — среднее расстояние между Землей и Солнцем. Если среднее расстояние Земля-Луна aM также известно, то
К сожалению, постоянная этого “лунного уравнения”, т.е. 6,3″, это очень маленький угол, который крайне трудно точно измерить. К тому же МЕ/МM зависит от точного знания расстояния Земля-Солнце.
Значение лунного уравнения может быть в несколько раз больше для астероида, который проходит близко с Землей. Гилл 11 использовал 1888 и 1889 позиционных наблюдения астероида 12 Виктория и солнечного параллакса на 8.802″ ± 0.005″ и пришел к выводу, что МЕ/МM =81.702±0.094. Хинкс 12 использовал длинную последовательность наблюдений астероида 433 Эрос и пришел к выводу, что МЕ/МM =81.53±0.047. Затем он использовал обновленное значение солнечного параллакса и исправленные значения для астероида 12 Виктория, сделанные Дэвидом Гиллом и получил исправленное значение МЕ/МM =81.76±0.12.
Используя этот подход, Ньюкомб 13 , из наблюдений Солнца и планет, получил МЕ/МM =81.48±0.20.
Спенсер Джонс14 проанализировал наблюдения за астероидом 433 Эрос, когда он проходил в 26 х 106 км от Земли в 1931 году. Главной задачей было измерение солнечного параллакса, и комиссия Международного астрономического союза была создана в 1928 году с этой целью. Спенсер Джонс обнаружил, что постоянная лунного уравнения равна 6.4390± 0.0015секунды дуги. Это, в сочетании с новым значением для солнечного параллакса, привело к отношению МЕ/МM =81.271±0.021.
Прецессия и нутация также могут быть использованы. Полюс оси вращения Земли прецессирует вокруг полюса эклиптики каждые 26 000 лет или около того, что также проявляется в движения первой точки Овна вдоль эклиптики примерно на 50.2619″ в год.. Прецессия была обнаружена Гиппархом более 2000 лет назад. На это движение накладывается более быстрое, небольшое периодическое движение, известное как нутация, обнаруженная Джеймсом Брэдли (1693 ~ 1762) в 1748 году. Нутация в основном происходит, потому что плоскость лунной орбиты не совпадает с плоскостью эклиптики. Максимальная нутация составляет около 9.23″ и полный цикл занимает около 18.6 лет. Существует также дополнительные нутации производимые Солнцем. Все эти эффекты обусловлены моментами сил, действующими на экваториальные вздутия Земли.
Величина установившейся лунно-солнечной прецессии по долготе, и амплитуды различных периодических нутаций по долготе, являются функциями, среди прочего, массы Луны. Стоун15 отметил, что лунно-солнечная прецессия, L, и постоянная нутации, N, даны так:
где ε=(МM/МS ) (aS/aM )3, aS и aM среднее расстояние Земля-Солнце и Земля-Луна;
eE и eM — эксцентриситеты земной и лунной орбиты, соответственно. Постоянная Делоне представлена как γ. В первом приближении γ есть синус половины угла наклона лунной орбиты к эклиптике. Величина ν это смещение узла лунной орбиты,
в течение Юлианского года, по отношению к линии равноденствий; χ является постоянной, которая зависит от средней возмущающей силы Солнца, момента инерции Земли, и угловой скорости Земли по своей орбите. Обратите внимание, что χ сокращается, если L делится на Н. Стоун подставляя L = 50.378″ и N = 9.223″ получил МЕ/МM = 81.36. Ньюкомб использовал свои собственные измерения L и N и нашел МЕ/МM = 81.62 ± 0.20. Проктор 16 нашел, что МЕ/МM = 80.75.
Движение Луны вокруг Земли было бы точно по эллипсу, если бы Луна и Земля были единственными телами в Солнечной системе. Тот факт, что они таковыми не являются приводит к лунному параллактическому неравенству. В связи с привлечением других тел в Солнечной системе, и Солнца, в частности, орбита Луны чрезвычайно сложна. Три крупнейших неравенства, которые должны быть применены обусловлены эвекцией, вариацией, и годовым уравнением. В контексте настоящей работы вариация является наиболее важным неравенством. (Исторически Седиллот говорит, что лунная вариация была обнаружена Абул-Вафа в 9-м веке; другие приписывают это открытие Тихо Браге).
Лунная вариация вызвана изменением, которое происходит от различия солнечного притяжения в системе Земля-Луна на протяжении синодического месяца. Этот эффект равнен нулю, когда расстояния от Земли до Солнца и Луны до Солнца равны, в ситуации, возникающей очень близко к первой и последней четверти. Между первой четверти (через полнолуние) и последней четвертью, когда Земля находится ближе к Солнцу, чем Луна, и Земля преимущественно оттягивается от Луны. Между последней четвертью (через новолуние) и первой четвертью, Луна находится ближе к Солнцу, чем Земля, и поэтому Луна преимущественно оттягивается от Земли. Полученная остаточная сила может быть разложена на две составляющие, одна касательная к лунной орбите, а другая перпендикулярная к орбите (т.е., в направлении Луна-Земля).
Положение Луны меняется на целых ± 124.97 угловые секунды (согласно Брауэр и Клементс17) по отношению к позиции, которую она имела бы, если бы Солнце было бесконечно далеко. Именно эти 124.9″, известны как параллактическое неравенство.
Поскольку эти 124.97 угловые секунды соответствуют четырем минутам времени, то следует ожидать, что эта величина может быть измерена с достаточной точностью. Наиболее очевидное следствие параллактического неравенства в том, что интервал между новолунием и первой четвертью составляет около восьми минут, т.е. дольше, чем от этой же фазы до полнолуния. К сожалению, точность, с которой эта величина может быть измерена несколько уменьшилась по причине, что лунная поверхность неровная и что различные лунные края должны быть использованы для измерения лунной позиции в различных частях орбиты. (Вдобавок к этому есть также небольшое периодическое изменение в видимом полудиаметре Луны в связи с меняющимся контрастом между яркостью края Луны и неба. Это вносит погрешность, которая изменяется между ± 0.2″ и 2″, см. Кэмпбелл и Нейсон 18).
Рой 19 отмечает, что лунное параллактическое неравенство, P, определяется как
По словам Кэмпбелла и Нейсона18, параллактическое неравенство было установлено как 123.5″ в 1812 году, 122.37″ в 1854 году, 126.46″ в 1854 году, 124.70″ в 1859 году, 125.36″ в 1867 году, и 125.46″ в 1868 году. Таким образом, отношение массы Земли / Луна может быть рассчитано по наблюдениям параллактическим неравенства, если других величин, и особенно солнечного параллакса (т.е. aS), известны. Это привело к дихотомии среди астрономов. Некоторые предполагают, используя массовое соотношение Земля/Луна из параллактического неравенства, оценить среднее расстояние Земля-Солнце. Другие предполагают через последнее оценить первое (см Moulton 20).
Наконец рассмотрим возмущение планетных орбит. Орбиты наших ближайших соседей, Марса и Венеры, которые испытывают гравитационное влияние системы Земля-Луна. В связи с этим действием, орбитальные параметры, такие как эксцентриситет, долгота узла, наклонение, и аргумент перигелия изменяются как функция времени. Точное измерение этих изменений может быть использовано для оценки общей массы системы Земля / Луна, и вычитанием, массы Луны.
Это предложение было впервые сделано Леверье (см. Янг 21). Он подчеркнул тот факт, что движения узлов и перигелиев, хотя и медленные, но непрерывные, и, таким образом, будут известны со все большей точностью с течением времени. Леверье загорелся этой идеей так, что отказался от наблюдений тогдашнего транзита Венеры, будучи убежден, что солнечный параллакс и отношение масс Солнце/Земля в конечном итоге будет найдено гораздо точнее методом возмущений.
Рис. 1. Опубликованное значение для отношения масс Земля / Луна в зависимости от даты.
Самая ранняя точка происходит от Начала Ньютона.
Точность известной лунной массы.
Опубликованное значение для отношения масс Земли/Луны строится как функция даты публикации на рис. 1. Видно, что результаты стали гораздо меньше разниться после приблизительно 1830 года.
Методы измерения можно разделить на две категории. Приливная техника требуется особое оборудование. Вертикальный шест с градуировкой теряется в прибрежной грязи. К сожалению, сложность приливной обстановки вокруг берегов и заливов Европы означала, что полученные значения лунного массы были далеки от точной. Приливная сила, с которой тела взаимодействуют пропорциональна их массе, деленной на куб расстояния. Так следует помнить, что конечный продукт расчета на самом деле соотношение между лунной и солнечной массой. И соотношение между расстояниями до Луны и Солнца должно быть точно известно. Типичные приливные значения МЕ/MМ равны 40 (в 1687 году), 59 (в 1790 году), 75 (в 1825 году), 88 (в 1865 году), и 78 (в 1874 году), подчеркивают трудность, присущую интерпретации данных.
Все остальные методы опирались на точные телескопические наблюдений астрономических позиций. Детальные наблюдения звезд в течение длительных периодов времени привели к получению констант прецессии и нутации оси вращения Земли. Они могут быть интерпретированы в терминах соотношения между лунными и солнечными массами. Точные позиционные наблюдения Солнца, планет и некоторых астероидов, за несколько месяцев, привели к оценке расстоянии Земли от центра масс системы Земля-Луна. Тщательные наблюдения положения Луны в зависимости от времени в течение месяца привели к амплитуде параллактического неравенства. Последние два метода, вместе, опираясь на измерения радиуса Земли, длины звездного месяца, и ускорения силы тяжести на поверхности Земли, привели к оценке величины [1 + (ММ/МE)], а не массы Луны непосредственно. Очевидно, что если [1 + (ММ/МE)] известно лишь с точностью до ± 1%, масса Луны является неопределенной. Чтобы получить соотношение ММ/МE точностью скажем, 1, 0,1, 0,01% требуется величину [1 + (ММ/МE)] измерить с точностью ± 0.012, 0.0012, и 0.00012 %, соответственно.
Оглядываясь на исторический период с 1680 до 2000, можно видеть, что лунная масса была известна ± 50% между 1687 и 1755, ± 10% между 1755 и 1830, ± 3% между 1830 и 1900, ± 0.15 % между 1900 и 1968, и ± 0.0001% между 1968 и по настоящее время. Между 1900 и 1968 два значения были распространены в серьезной литературе. Лунный теория указала, что ME/MM = 81.53, и лунное уравнение и лунной параллактическое неравенство дало несколько меньшую величину ME/MM = 81.45 (см. Гарнетт и Вулли22). Другие значения цитировались исследователями, которые использовали иные значения солнечного параллакса в соответствующих уравнениях. Эта незначительная путаница была удалена когда легкий орбитальный аппарат и командный модуль летали по хорошо известным и точно-измеренным орбитам вокруг Луны в эпоху Apollo. Нынешний значение ME/MM = 81.300588 (см. Зейдельман23), является одной из наиболее точно известных астрономических величин. Наше точное знание фактической лунной массы омрачено неопределенностью в постоянной тяготения Ньютона, G.
Важность лунной массы в астрономической теории
Исаак Ньютон1 сделал очень мало с его новообретенным лунным знанием. Даже при том, что он был первым ученым, измерившим лунную массу, его МЕ/МM = 39.788, казалось бы, заслужили немного современных комментариев. Тот факт, что ответ был слишком мал, почти в два раза, не был реализован в течение более шестидесяти лет. Физически значим только вывод, который Ньютон извлек из ρM/ρE =11/9, состоящий в том, что «тело Луны плотнее и более земное, чем у нашей земли» (Начала, книга 3, предложение 17, следствие 3).
К счастью, этот увлекательный, хотя ошибочный, вывод не приведет добросовестных космогонистов в тупик в попытке объяснить его значение. Примерно в 1830 году стало ясно, что ρM/ρE было 0.6 и МЕ/МM было между 80 и 90. Грант24 отметил, что «это точка, в которой большая точность не взывала к существующим основам науки», намекая, что точность здесь неважна просто потому, что ни астрономическая теория, ни теория происхождения Луны, не полагались сильно на эти данные. Агнес Клерк25 был более осторожен, отметив, что «лунно-земная система … была особым исключением среди тел находящихся под влиянием Солнца.»
Луна (масса 7,35-1025 г) является пятым в Солнечной системе спутником из десятки (начиная с номера один, это Ганимед, Титан, Каллисто, Ио, Луна, Europa, Кольца Сатурна, Тритон, Титания, и Рея). Актуальный в 16ом и 17ом веках Парадокс Коперника (тот факт, что Луна вращается вокруг Земли, тогда как Меркурий, Венера, Земля, Марс, Юпитер и Сатурн вращается вокруг Солнца) давно забыт. Большой космогонический и селенологический интерес представляло отношение масс “главный / наиболее массивный-вторичный”. Вот список Плутон / Харон, Земля / Луна, Сатурн / Титан, Нептун / Тритон, Юпитер / Каллисто и Уран / Титания, коэффициенты, такие 8.3, 81.3, 4240, 4760, 12800 и 24600, соответственно. Это первое, что указывает на возможное совместное их происхождения по бифуркации путем конденсации жидкости тела (см, например, Дарвин26, Джинс27, и Биндер28). На самом деле, необычное отношение масс Земля / Луна привело Вуд 29 к выводу, что «указывает достаточно четко, что событие или процесс, который создал земную Луну был необычным, и предполагает, что некоторое ослабление нормального отвращение к привлечению специальных обстоятельств, может быть допустимо в этой проблеме».
Селенология, изучение происхождения Луны, стала «научной» с открытия в 1610 году Галилеем спутников Юпитера. Луна потеряла свой уникальный статус. Тогда Эдмонд Галлей 30 обнаружил, что лунный орбитальный период меняется со временем. Это было не так, однако, до работы Г.Х. Дарвина в конце 1870-х, когда стало ясно, что первоначально Земля и Луна были гораздо ближе друг к другу. Дарвин предположил, что резонансно-индуцированная бифуркация вначале, быстрое вращение и конденсация расплавленной Земли привели к образованию Луны (см Дарвин 26). Осмонд Фишер 31 и В.Х. Пикеринг 32 даже зашел так далеко, что предположил, что бассейн Тихого океана это шрам, который остался, когда Луна откололась от Земли.
Вторым крупным селенологическим фактом было отношение масс Земля/Луна. То, что имелось нарушение значений для дарвиновских тезисов было отмечено А.М. Ляпуновым и Ф.Р. Мултоном (см., например, Moulton33).. Вместе с низким комбинированным угловым моментом системы Земля-Луна, это привело к медленной гибели дарвиновской теории приливов. Затем было предложено, что Луна была просто сформирована в другом месте в Солнечной системе, а затем захвачена в некий сложный процесс трех тел (см., например. Си 34).
Третьим основным фактом была лунная плотность. Ньютоново значение ρM/ρE 1.223 стал 0.61 к 1800г., 0.57 к 1850г., и 0.56 к 1880 (см. Браш35). На заре девятнадцатого века стало ясно, что Луна имеет плотность, которая была около 3.4 г см -3. В конце ХХ века это значение почти не изменилось, и составило 3.3437±0.0016г см-3 (см. Хаббард36). Очевидно, что лунный состав отличался от состава Земли. Эта плотность сходна с плотностью пород на небольшой глубине в мантии Земли и предполагает, что дарвиновская бифуркация произошла в гетерогенной, а не в однородной Земле, в то время, которое наступило после дифференцировки и основного формообразования. Недавно это сходство было одним из основных фактов, способствующих популярности таранной гипотезы лунного образования.
Было отмечено, что средняя плотность Луны была такой же, как у метеоритов (и, возможно астероидов). Гуллемин37 указал плотность Луны в 3.55 раза больше, чем у воды. Он отметил, что “так любопытно было узнать значения 3.57 и 3.54 плотности для некоторых метеоритов, собранных после того, как они попадают на поверхность Земли». Нэсмит и Карпентер38 отметили, что «удельный вес лунного вещества (3.4) мы можем заметить, это примерно то же самое, что у кремния стекла или алмаза: и как ни странно это почти совпадает с метеоритами, что время от времени мы находим лежащими на земле; следовательно подтверждается теория, что эти тела были изначально фрагментами лунного вещества, и, вероятно, выбрасывались некогда из лунных вулканов с такой силой, что попадали в сферу земного притяжения, и в конечном счете, падали на земную поверхность «.
Юри 39, 40 использовал этот факт, чтобы поддержать свою теорию захвата лунного происхождения, хотя он беспокоился о разнице между лунной плотностью и плотностью определенных хондритовых метеоритов, и других планет земной группы. Эпик 41 счел эти различия несущественными.
Выводы
Масса Луны чрезвычайно нехарактерна. Она слишком велика, чтобы разместить наш спутник комфортно среди групп планетарных захваченных астероидов, как Фобос и Деймос вокруг Марса, групп Гималия и Ананке вокруг Юпитера, и групп Япет и Фиби вокруг Сатурна. Тот факт, что эта масса 1.23% Земли, к сожалению, только незначительная подсказка среди многих в поддержку предлагаемого механизма воздействия-происхождения. К сожалению, сегодняшняя популярная теория типа “тело размером с Марс попадает в недавно дифференцированную Землю и выбивает массу материала» имеет некоторые мелочные проблемы. Даже при том, что этот процесс был признан возможным, это не гарантирует, что он является вероятным. Такие вопросы, как “почему только одна Луна сформировалась в то время?”, «почему другие Луны не образуются в другое время?”, “почему этот механизм сработал на планете Земля, и не коснулся наших соседей Венеры, Марса, и Меркурия?” приходят на ум.
Масса Луны слишком мала, чтобы поместить ее в тот же разряд, что Харон Плутона. 8.3/1 Соотношение между массами Плутона и Харона, коэффициент, который указывает, что пара этих тел образована бифуркацией конденсации, вращением почти жидкого тела, и отстоит очень далеко от значения 81.3/1 отношения массы Земли и Луны.
Мы знаем лунную массу с точностью до одной части от 109. Но не можем избавиться от ощущения, что общий ответ на эту точностью “и что”. В качестве ориентира, или подсказки о происхождении нашего небесного напарника этого знания мало. На самом деле, в одном из последних 555-страничных томов на эту тему 42, индекс даже не включает “лунную массу” в виде записи!
Ссылки.
References
(1) I. Newton, Principia, 1687. Here we are using Sir Isaac Newton’s Mathematical Principles of Natural Philosophy, translated into English by Andrew Motte in 1729; the translation revised and supplied with an historical and explanatory appendix by Florian Cajori, Volume 2: The System of the World (University of California Press, Berkeley and Los Angeles}, 1962.
(2) P.-S. Laplace, Mem. Acad, des Sciences, 45, 1790.
(3) P.-S. Laplace, Traite de Mechanique Celeste, Tome 5, Livre 13 (Bachelier, Paris), 1825.
(4) P.-S. Laplace, Traite de Mechanique Celeste, Tome 3 (rimprimerie de Crapelet, Paris), 1802, p, 156.
(5) P.-S. Laplace, Traite de Mechanique Celeste, Tome 4 (Courcicr, Paris), 1805, p. 346.
(6) H. P. Finlayson, MNRAS, 27, 271, 1867.
(7) W. E, Fcrrel, Tidal Researches. Appendix to Coast Survey Report for 1873 (Washington, D. C) 1874.
(8) W. Harkness, Washington Observatory Observations, 1885? Appendix 5, 1891,
(9) C. W. C. Barlow Sc G. H, Bryan, Elementary Mathematical Astronomy (University Tutorial Press, London) 1914, p. 357.
(10) G. B. Airy, Mem. RAS., 17, 21, 1849.
(11) D. Gill, Annals of the Cape Observatory, 6, 12, 1897.
(12) A. R. Hinks, MNRAS, 70, 63, 1909.
(13) S. Ncwcomb, Supplement to the American Ephemeris for tSy? (Washington, D. C), 1895, p. 189.
(14) H. Spencer Jones, MNRAS, 10], 356, 1941.
(15) E. J. Stone, MNRAS, 27, 241, 1867.
(16) R. A. Proctor, Old and Nets Astronomy (Longmans, Green, and Co., London), [892, p. 213,
(17) D, Brouwer & G. M. Clements, Methods of Celestial Mechanics (Academic Press, New York), 1961.
(18) J. Campbell & E. Neison, MNRAS, 40, 386 and 441, 1880.
(19) A. E. Roy, Orbital Motion, 2nd edition (Adam Hilger, Bristol), 1982, p. 257,
(20) F, R, Moukon, An Introduction w Celestial Mechanics, 2nd revised edition (The Macrnillan Co., New York), 1914, p. 352-
(21) C. A. Young, The Sun (Kegan Paul, Trench, Trubner & Co., London), rSSi, p. 32,
(22) B. L. Gumeire St. R. v, d. R. Woolley, Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, 3rd impression (Her Majesty’s Stationery Office, London), 1974, p. 4^0.
(23) P. K. Seidelmann (ed,), Explanatory Supplement to the Astronomical Almanac (University Science Books, Mill Valley, California)., 1992, p. 696.
(24) R. Grant, History of Physical Astronomy (Henry G. Bohn, London), 1852, p. 123.
(25) A. M. Clerke, A Popular History of Astronomy during the Nineteenth Century (Adam & Charles Black, Edinburgh), 1885, p. 359.
(26) G. H. Darwin, Phil, Tram. Roy, Soc,, 170, 447, 1879.
(27) J, H, Jeans, Problems of Cosmogony and Stellar Dynamics (Cambridge University Press), 1919.
(28) A. B. Binder, in W. K, Hanmann, R. J. Phillips & G. J. Taylor (eds,), Origin of the Moon (Lunar and Planetary Institutes Houston), 1986, p. 499.
(29) J. A. Wood, in W. K. Hflrtmann, R. J. Phillips & G- J. Taylor (eds,), Origin of the Moon (Lunar and Plane rary Institute, Houston), 1986, p. 19.
(30) E. Halley, Phil. Tram., 17, 913, 1693.
(31) O. Fisher, Nature, 25, 243, 1882.
(32) W. H. Pickering, The Moon: A Summary of the Existing Knowledge of our Satellite (Doublcday Page and Co., New York), 1903, p. 103.
(33) F. R. Moulton, ApJ, 29, 1, 1909.
(34) T. J. J. See, J. Brit. Astr, Assoc, 25, 282, 1915.
(35) S. G. Brush, Nebulous Earth: The (Origin of the Solar System and the Gore of the Earth from Laplace to Jeffreys (Cambridge University Press), 1996, p. 31.
(36) W. B. Hubbard, Planetary Inierion (Van Nosirand Rettihold Co,, New York), 1984, p. T84.
(37) A. Guillemin, La Lune (Hachette, Paris), 1870, p. 189.
(38) J. Nasmyth & J. Carpenter, The Moon, Considered as a Planet, a World, and a Satellita (John Murray, London), 1903, p. 59.
(39) H. C. Urey, The Planets their Origin and Development (Oxford University Press), 1952, p. 204.
(40) H. C. Urey, in Z. Kopal & Z. K. Mikhailov (eds-), The Moon (IAU Symposium 14) (Academic Press), 1962, p, 133.
(41) E. J. Opik, Irish Astr, J., 66, 6c, 1961.
(42) R. M- Canup & K. Righter (eds), Origin of the Earth and Moon (The University of Arizona Press, Tucson), 2000.
www.spacephys.ru
Масса Луны, вес и другие интересные факты
Естественный и единственный спутник Земли, Луна, после Солнца является вторым объектом по яркости. По величине она является пятым объектом Солнечной системы. Между центрами Луны и Земли среднее расстояние составляет 384467 км. Масса Луны соответствует значению 7,33*1022кг.
С древних времен люди предпринимали попытки описать и объяснить ее движение. Основу всех современных расчетов составляет теория Брауна, которая была создана на рубеже XIX – XX веков. Для определения точного движения этого небесного тела необходима была не только масса Луны. В расчет принимались многочисленные коэффициенты тригонометрических функций. Современной науке под силу проводить более точные расчеты.
Лазерная локация позволяет измерять размеры небесных объектов с ошибкой всего в несколько сантиметров. С ее помощью было установлено, что масса Луны значительно меньше, чем масса нашей планеты (в 81 раз), а радиус ее меньше в 37 раз. Долгое время с точностью определить эту величину не представлялось возможным, но запуск космических спутников позволил открыть новые перспективы. Известен интересный факт, что во времена Ньютона масса Луны определялась по величине вызываемого ею прилива.
Мы по-разному можем видеть освещенную поверхность этого спутника. Видимая часть диска, освещенного Солнцем, называется фазой. Всего существует четыре фазы: полностью темная поверхность Луны – новолуние, растущий лунный серп – первая четверть, освещенный полностью диск – полнолуние, освещенная половина со второй стороны – последняя четверть. Они выражаются в сотых и десятых долях единицы. Смена всех лунных фаз – синодический период, который представляет собой обращение Луны от фазы новолуния до последующего новолуния. Его называют еще синодическим месяцем, равным примерно 29,5 дням. За этот период времени Луна сможет пройти по орбите путь и дважды успеть побывать в одной и той же фазе. Сидерический период обращения, длящийся 27,3 дня, является полным оборотом Луны вокруг Земли.
Ошибочно распространено утверждение, что поверхность Луны мы видим с одной стороны и то, что она не вращается. Движения Луны происходят в виде вращения вокруг своей оси и обращения вокруг Земли и Солнца
Полный оборот вокруг собственной оси происходит за 27 земных суток 43 мин. и 7 часов. Обращение по эллиптической орбите вокруг Земли (один полный оборот) происходит за тоже время. На это оказывают влияние приливы в лунной коре, вызывающие приливы на Земле, происходящие под воздействием лунного притяжения.
Находясь на более далеком расстоянии от Луны, чем Земля, Солнце из-за своей огромной массы вдвое сильнее притягивает Луну, чем Земля. Земля искажает траекторию обращения Луны вокруг Солнца. По отношению к Солнцу ее траектория всегда вогнутая.
Луна не имеет атмосферы, небо над ней всегда черное. Из-за того, что звуковые волны не распространяются в вакууме, на этой планете царит полнейшая тишина. Под прямыми лучами Солнца температура в дневное время во много раз превышает точку кипения воды, а ночами достигает –150 С. Удельный вес Луны составляет единицу. Ее плотность всего в 3,3 р. больше воды. На ее поверхности есть огромные равнины, которые покрыты застывшей лавой, множество кратеров, образованных при падении астероидов. Сила гравитации уступает земному притяжению, а вес Луны меньше Земли, поэтому вес тела человека может уменьшиться в 6 раз при нахождении на Луне.
По радиоактивным веществам ученые определили примерный возраст Луны, который составляет 4,65 млрд. лет. По последней наиболее правдоподобной гипотезе, предполагается, что образование Луны произошло вследствие гигантского столкновения с молодой Землей огромного небесного тела. Согласно другой теории Земля и Луна были образованы независимо в совершенно различных частях Солнечной системы.
fb.ru
На сколько масса Земли больше массы Луны?
Средний экваториальный диаметр Луны равен 3474,8 километра и составляет 27,24 процента (немногим более 1U) Земного. В связи с этим площадь лунной поверхности составляет 7,4 процента (Vi3,5) от площади земной поверхности, а объем Луны — всего 2 процента (Vso) от объема Земли. Масса Луны равна 73,483 квинтиллиона (миллиарда миллиардов)Тонн и составляет 1,23 процента (Vsi. s) от массы Земли. Различие относительных объема и массы Луны (Vso и Vsi. s) обусловлено тем, что средняя плотность Луны (3,34 грамма на кубический сантиметр) в 1,65 раза меньше средней плотности Земли.
Как Велик Суточный Перепад Температуры На Поверхности Луны?
Суточный перепад температуры на поверхности Луны весьма велик: температура опускается до минус 170 градусов Цельсия в ночное время и поднимается до плюс 130 градусов Цельсия, когда Солнце в лунном зените. Тем не менее на глубине всего около метра под поверхностью температура почти постоянна — около минус 15 градусов Цельсия. Объясняется это исключительно низкой теплопроводностью лунной поверхности, которая на глубину до 1,5-2 метров состоит из очень пористого вещества реголита. Этот покрывающий коренные скальные породы мелкообломочный материал образовался за счет выбросов раздробленной породы при ударных взрывах во время падения метеоритов. Указанные взрывы вызвали дробление коренных пород и спекание мелких обломков в вакууме в шлакоподобную массу.
Какую Часть Лунной Поверхности Можно Увидеть С Земли?
Период вращения Луны вокруг своей оси в точности равен периоду ее обращения вокруг Земли, а потому она всегда «смотрит» на нас одной своей стороной. Другую сторону мы с Земли никогда не видим, если не считать того, что вследствие эллиптичности лунной орбиты и небольшого наклона ее экватора к плоскости орбиты Луна для земного наблюдателя как бы несколько качается, предоставляя нам возможность немного заглядывать за ее видимый край то с одной, то с другой стороны. Благодаря этому мы можем обозреть с Земли (разумеется, не одновременно) 59 процентов всей лунной поверхности. Невидимая с Земли часть поверхности Луны составляет 41 процент всей ее поверхности, а 18 процентов всей поверхности то видимы, то невидимы.
Какой Диаметр Имеет Самый Большой Лунный Кратер?
Преобладающим типом образований на лунной поверхности являются метеоритные кратеры самых разных размеров: от сотен километров до
Нескольких десятков сантиметров в диаметре. Самый большой из них — кратер Байи — имеет диаметр 300 километров. Для сравнения: крупнейший из предполагаемых земных ударных кратеров (в Садбери, Канада) имеет диаметр 140 километров.
Почему Один Из Лунных Кратеров Назван В Честь Яна Гевелия?
Поляк Ян Гевелий (1611-1687), строго говоря, не был профессиональным астрономом. Получив образование юриста, он был городским советником в Гданьске. Но еще с гимназических лет Гевелий увлекся астрономией и именно в этой области увековечил свое имя. Один из лунных кратеров назван в честь Гевелия, потому что именно он первым составил первые точные детальные и художественно выполненные карты Луны, дал название многим деталям поверхности Луны, открыл оптическую либрацию Луны (видимые периодические маятникообразные колебания Луны относительно ее центра) .
Почему Кратер Тихо Иногда Называют «столичным» Кратером Луны?
Кратер Тихо вполне рядовой по диаметру (82 километра) . Он не заслуживал бы особого внимания, если бы не совершенно уникальная система светлых лучей, радиально расходящихся от этого кратера по огромной территории видимого с Земли полушария Луны. Вероятно, по этой причине астрономы называют его «столичным» кратером Луны. Более сотни лучей расходятся от кратера по дугам больших кругов, совершенно не считаясь с особенностями рельефа. Некоторые из лучей простираются в длину на тысячи километров и видны даже невооруженным глазом, особенно в полнолуние. Кратер Тихо и его лучевая система — свидетельство грандиозной катастрофы, вызванной, вероятно, падением крупного метеорита и охватившей почти треть видимого
otvet.mail.ru
спутник Земли. Описание и характеристики Луны.
Луна — спутник Земли
Фазы Луны
Расстояние от Земли до Луны:384 400 километров
Диаметр Луны: 3476 километров
Луна, была известна с доисторических времен. Это — второй самый яркий объект на небе после Солнца. Луна делает полный оборот вокруг земли за 1 месяц.
Время между новолуниями составляет 29.5 дней (709 часов), это немного отличается от орбитального периода Луны (измеренного относительно звезд), так как Земля перемещается на существенное расстояние по своей орбите вокруг Солнца за время оборота луны вокруг Земли.
Первый посещение Луны космическим зондом Луна 2 (СССР) состоялось в 1959. Это — единственное внеземное тело, которое посетили люди. Первое посещение человека состоялось 20 июля 1969 (США), последнее посещение Луны человеком состоялось в декабре 1972. Луна — также единственная космическая планета, образцы грунта которой, были доставлены на Землю.
Летом 1994 году была составлена карта Луны, небольшим космическим кораблем Clementine, повторное картографирование проводилось в 1999 году космическим кораблем Lunar Prospector.
Фрагмент обратной стороны Луны от Аполлон -11
Гравитационные силы, существующие между Землей и Лунной стали причиной некоторых интересных эффектов.
Самыми явными эффектами влияния Луны – являются океанические приливы и отливы. Гравитационная сила влияния Луны более сильная на стороне Земли, обращенной к Луне и более слабая на противоположной стороне. Эффект намного более сильно отражен в приливах океанской воды, чем в твердой коре Земли. Вода за счет притяжения луны концентрируется на точке Земли, которая находится наиболее близко к Луне.
Это — очень упрощенная модель приливов; фактические потоки воды, особенно вдоль побережий, намного более сложные.
Притяжение Луны замедляет вращение Земли примерно на 1,5 миллисекунды за столетие.
Луна за счет этих эффектов замедляет вращение, что удаляет ее орбиту примерно на 3.8 сантиметра ежегодно.
Асимметричная природа гравитационного взаимодействия с землей привела к тому, что Луна всегда обращена к Земле только одной стороной. Так же как Вращение Луны замедляет вращение Земли вокруг своей оси, так же в далеком прошлом Земля замедлила вращение луны, но эффект был гораздо сильным.
Обратная сторона Луны
Фактически Луна немого колеблется, а не статически обращена к Земле, периодически появляются для обозрения очень маленькие части обратной стороны Луны, но фактически обратная сторона Луны не доступна для обозрения со стороны Земли.
Впервые оборотную сторону Луны сфотографировал Советский космический аппарат Луна 3 в 1959 году.
У Луны нет атмосферы. Есть, очевидно, лед на Северном полюсе.
Состав слоев Луны досконально не изучен, однако по теории считается, что кора Луны в среднем имеет толщину 68 километров, ниже коры идет мантия и вероятно в центре есть ядро радиусом примерно 340 километров, которое составляет около 2% массы Луны. В отличие от Земли на луне нет вулканической деятельности. Центр массы Луны смещен от геометрического центра примерно на 2 километра в направлении Земли. Кроме того, кора Луны более тонкая на стороне Луны, обращенной к Земле.
На Луне различают два типа ландшафта – кратеры и горы и относительно гладкая поверхность, которая составляет примерно 16% всей площади Луны. По не известной причине гладкая поверхность преобладает на стороне, обращенной к Земле.
В общей сложности 382 кг горных образцов были возвращены в Землю программами Аполлона и Луна. Они обеспечили большую часть знания Луны. Даже сегодня, спустя более 30 лет после последней посадки на Луну, ученые все еще изучают эти драгоценные образцы.
Большинство скал на поверхности Луны, имеют возраст от 4.6 до 3 миллиардов лет.
Для сравнения, на земле скалу редко бывают более 3-х миллиардов лет.
Таким образом, Луна представляет простор для исследования ранней истории Солнечной системы, не доступной на Земле.
До исследования образцов грунта с луны, переданного космическим аппаратом Аполлон, не было единой теории происхождения Луны.
Сторона Луны, обращенная к Земле
Было 3 теории образования Луны:
1. Земля и Луна сформирована в то же самое время из Солнечной Туманности.
2. Луна откололась от Земли под воздействием механической силы удара огромного тела.
3. Луна сформировалась в ином пространстве от Земли, но была захвачена силой притяжения Земли.
После исследования лунного грунта преобладает теория №2, — Луна сформировалась от удара с очень большим объектом, таким, как Марс или даже больше и формирование Луны произошло из выброшенного от столкновения материала.
У Луны нет глобального магнитного поля. Но часть его поверхности излучает силовые линии, это указывает, что, возможно, было глобальное магнитное поле на заре истории Луны.
Без атмосферы и магнитного поля, поверхность Луны находится под воздействием солнечного ветра. За 4 миллиарда лет ионы солнечного ветра накапливались в реголите Луны. Таким образом, образцы реголита, возвращенного миссиями Аполлона, оказались ценным материалом в исследованиях солнечного ветра.
Параметры планеты Луна:
Масса: 0,07349 x 1024 кг
Объем: 2,1958 x 1010 кубических километров
Экваториальный радиус (км): 1738,1
Полярный радиус (км): 1736,0
Средняя плотность (кг/м3): 3350
Гравитация (ed.) (м/с2): 1,62
Ускорение свободного падения (ed.) (м/с2): 1,62
Вторая космическая скорость (км/с): 2,38
Солнечная энергия (W/m2): 1367,6
Температура абсолютно черного тела (k): 274,5
Полуглавная ось (расстояние от Земли) (106 км): 0,3844
Перигей (106 км): 0,3633
Апогей (106 км): 0,4055
Период вращения вокруг Земли (дней): 27,3217
Синодический период (дней): 29,53 (смена лунных фаз)
Максимальная орбитальная скорость (км/с): 1,076
Минимальная орбитальная скорость (км/с): 0,964
Наклон к эклиптике (градусы): 5,145
Наклон к экватору (градусы): 18,28 — 28,58
Эксцентриситет Орбиты: 0,0549
Период вращения вокруг своей оси (часы): 655,728
Отдаление от Земли (см/год): 3,8
Расстояние от Земли (км): 384467
Похожие статьи:
mostinfo.su
Масса Луны, вес и другие интересные факты
Естественный и единственный спутник Земли, Луна, после Солнца является вторым объектом по яркости. По величине она является пятым объектом Солнечной системы. Между центрами Луны и Земли среднее расстояние составляет 384467 км. Масса Луны соответствует значению 7,33*1022кг.
С древних времен люди предпринимали попытки описать и объяснить ее движение. Основу всех современных расчетов составляет теория Брауна, которая была создана на рубеже XIX – XX веков. Для определения точного движения этого небесного тела необходима была не только масса Луны. В расчет принимались многочисленные коэффициенты тригонометрических функций. Современной науке под силу проводить более точные расчеты.
Лазерная локация позволяет измерять размеры небесных объектов с ошибкой всего в несколько сантиметров. С ее помощью было установлено, что масса Луны значительно меньше, чем масса нашей планеты (в 81 раз), а радиус ее меньше в 37 раз. Долгое время с точностью определить эту величину не представлялось возможным, но запуск космических спутников позволил открыть новые перспективы. Известен интересный факт, что во времена Ньютона масса Луны определялась по величине вызываемого ею прилива.
Мы по-разному можем видеть освещенную поверхность этого спутника. Видимая часть диска, освещенного Солнцем, называется фазой. Всего существует четыре фазы: полностью темная поверхность Луны – новолуние, растущий лунный серп – первая четверть, освещенный полностью диск – полнолуние, освещенная половина со второй стороны – последняя четверть. Они выражаются в сотых и десятых долях единицы. Смена всех лунных фаз – синодический период, который представляет собой обращение Луны от фазы новолуния до последующего новолуния. Его называют еще синодическим месяцем, равным примерно 29,5 дням. За этот период времени Луна сможет пройти по орбите путь и дважды успеть побывать в одной и той же фазе. Сидерический период обращения, длящийся 27,3 дня, является полным оборотом Луны вокруг Земли.
Ошибочно распространено утверждение, что поверхность Луны мы видим с одной стороны и то, что она не вращается. Движения Луны происходят в виде вращения вокруг своей оси и обращения вокруг Земли и Солнца
Полный оборот вокруг собственной оси происходит за 27 земных суток 43 мин. и 7 часов. Обращение по эллиптической орбите вокруг Земли (один полный оборот) происходит за тоже время. На это оказывают влияние приливы в лунной коре, вызывающие приливы на Земле, происходящие под воздействием лунного притяжения.
Находясь на более далеком расстоянии от Луны, чем Земля, Солнце из-за своей огромной массы вдвое сильнее притягивает Луну, чем Земля. Земля искажает траекторию обращения Луны вокруг Солнца. По отношению к Солнцу ее траектория всегда вогнутая.
Луна не имеет атмосферы, небо над ней всегда черное. Из-за того, что звуковые волны не распространяются в вакууме, на этой планете царит полнейшая тишина. Под прямыми лучами Солнца температура в дневное время во много раз превышает точку кипения воды, а ночами достигает –150 С. Удельный вес Луны составляет единицу. Ее плотность всего в 3,3 р. больше воды. На ее поверхности есть огромные равнины, которые покрыты застывшей лавой, множество кратеров, образованных при падении астероидов. Сила гравитации уступает земному притяжению, а вес Луны меньше Земли, поэтому вес тела человека может уменьшиться в 6 раз при нахождении на Луне.
По радиоактивным веществам ученые определили примерный возраст Луны, который составляет 4,65 млрд. лет. По последней наиболее правдоподобной гипотезе, предполагается, что образование Луны произошло вследствие гигантского столкновения с молодой Землей огромного небесного тела. Согласно другой теории Земля и Луна были образованы независимо в совершенно различных частях Солнечной системы.
autogear.ru