Гиперзвуковой летательный аппарат – Гиперзвуковой летательный аппарат — Википедия. Что такое Гиперзвуковой летательный аппарат

Содержание

Гиперзвуковой летательный аппарат Википедия

Полёт ракетоплана X-15 — первого в истории ГЛА-самолёта, совершавшего суборбитальные пилотируемые космические полёты Посадка суборбитального ракетоплана SpaceShipOne Спуск космоплана X-20 в представлении художника Космолёт VentureStar на орбите в представлении художника Космолёт Rockwell X-30 на орбите в представлении художника Космоплан X-37 на стоянке АКС-космолёт Skylon по проекту

Гиперзвуково́й лета́тельный аппара́т (ГЛА, ГЗЛА) — летательный аппарат (ЛА), способный осуществлять полёт в атмосфере с гиперзвуковой скоростью (бо́льшей или равной 5М; М — число Маха) и маневрировать с использованием аэродинамических сил.

Крылатый летательный аппарат, обладающий такой скоростью полёта, может планировать на значительно бо́льшие дальности, чем обычный, так как планирование становится «динамическим».

Деление летательных аппаратов на «дозвуковые», «сверхзвуковые» и «гиперзвуковые» имеет достаточно прочную физическую основу и отражает сущность явлений при взаимодействии ЛА с воздушной средой: полёт на гиперзвуковых скоростях так же принципиально отличается от полёта на сверхзвуковых, как последний от полёта на скоростях дозвуковых

[1][2][3].

Реализация

В истории ГЛА были реализованы в виде нескольких испытательных самолётов, беспилотных летательных аппаратов и орбитальных ступеней-космопланов многоразовых космических кораблей (МТКК). Также существовало и существует большое количество проектов транспортных средств указанных типов, а также аэрокосмических систем (орбитальных самолётов) с гиперзвуковыми разгонными и орбитальными ступенями или одноступенчатых АКС-космолётов и пассажирских лайнеров-космопланов.

Одним из первых детальных проектов ГЛА был нереализованный проект Зенгера по созданию частично-орбитального боевого космолёта-бомбардировщика «Зильберфогель» в Нацистской Германии.

В отличие от космопланов, ввиду необходимости при создании космолётов на порядок более сложных двигательных и конструкционных технологий ни один из проектов космолётов к настоящему времени реализован не был.

Гиперзвуковые самолёты

В 1960-е годы в США была осуществлена программа разработки и полётов экспериментального самолёта-ракетоплана North American X-15, который стал первым в истории и на 40 лет единственным ГЛА-самолётом, совершавшим суборбитальные пилотируемые космические полёты. В США 13 его полётов выше 80 км, а в мире (ФАИ) — 2 из них, в которых была превышена граница космоса в 100 км, признаны суборбитальными пилотируемыми космическими полётами, а их участники — астронавтами.

Аналогичные программы в СССР и других странах.

В начале XXI века начал развиваться частный космический туризм, в русле которого возникло и развивается несколько проектов частных суборбитальных пилотируемых космических кораблей многоразового использования с космопланами, совершающими гиперзвуковой полёт на траектории подъёма и спуска. В 2004 году были совершены полёты первого из таких аппаратов SpaceShipOne компании «Virgin Galactic». Развитием программы стал SpaceShipTwo. Следующими предполагаются не доходящие до космоса суборбитальные LYNX и другие частные аппараты.

Также существуют проекты гиперзвуковых суборбитальных пассажирских авиалайнеров (напр, SpaceLiner, ZEHST) и военных транспортников быстрого реагирования.

Гиперзвуковые ступени АКС и МТКК — космопланы и космолёты

Во всех крылатых МТКК и АКС их вторая (космоплан) или единственная (космолёт) выходящая на орбиту ступень совершает гиперзвуковой полёт на траектории спуска, а в некоторых — в одно- или двухступенчатых системах с горизонтальным стартом — также и при подъёме.

В 1960-х годах и позже, в США и СССР существовали, но не были реализованы проекты орбитальных самолётов-космопланов. Проекты X-20 Dyna Soar в США и Лапоток, ЛКС в СССР предусматривали вертикальный запуск на обычных ракетах-носителях (РН) орбитальных самолётов, которые становились ГЛА только при возвращении. В нереализованном проекте АКС СССР Спираль и разгонная первая ступень (самолёт-разгонщик), и орбитальный самолёт были гиперзвуковыми и совершали горизонтальные совместный старт и раздельную посадку.

В США в 1980-х — 2000-х гг. была отработана обширная программа из более чем 100 полётов первого в истории МТКК Спейс Шаттл с орбитальным самолётом-космопланом. Аналогичный, но запускаемый на РН, космоплан СССР Буран совершил только один полёт на орбиту. Ему предшествовали испытательные суборбитальные и орбитальные полёты прототипов космопланов БОР-4 и БОР-5, также запускаемых на РН.

В 1990-х и 2000-х годах существовали, но были отменены до стадии практической реализации проекты ряда многоразовых транспортных космических систем и АКС: в России — запускаемый с обычного самолёта космоплан МАКС и космолёт РАКС, в США — одноступенчатые космолёты VentureStar с вертикальным стартом и горизонтальной посадкой и NASP (Rockwell X-30) с горизонтальным стартом и посадкой, во Франции и Евросоюзе — запускаемый на РН космоплан Гермес, в Японии — запускаемый на РН космоплан HOPE (полёт на орбиту совершил его прототип HIMES) и двухступенчатый ASSTS с горизонтальным стартом и посадкой, в Германии — двухступенчатый Зенгер-2 с горизонтальным стартом и посадкой, в Великобритании — одноступенчатый HOTOL с горизонтальным стартом и посадкой, в Индии — запускаемый на РН космоплан Hyperplane и др.

В начале XXI века в России существовал, но был отменён проект частично-многоразового крылатого космического корабля Клипер, запускаемого на обычной РН.

В США продолжается проект Boeing X-37 с полётами на орбиту экспериментального космоплана, запускаемого на РН. Разрабатываются проекты: в Великобритании — одноступенчатый АКС-космолёт Skylon с горизонтальным стартом и посадкой, в Индии — запускаемый на РН космоплан-прототип одноступенчатой АКС-космолёта RLV/AVATAR с вертикальным стартом и горизонтальной посадкой, в Китае — запускаемый на РН космоплан и его прототип Шэньлонг и двухступенчатый МТКК с горизонтальным стартом и посадкой и др.

Гиперзвуковые БПЛА

Проекты специальных экспериментальных беспилотных ГЛА разрабатываются и осуществляются в целях отработки возможностей создания двух- и одноступенчатых многоразовых транспортных АКС (космопланов и космолётов) следующих поколений и перспективных технологий ракетного двигателестроения (ГПВРД) и других.

Существовали доведённые до разных начальных степеней реализации проекты беспилотных ГЛА в США — Boeing X-43, России — «Холод» и «Игла», Германии — SHEFEX (прототип космоплана/космолёта), Австралии — AUSROCK и другие.

Гиперзвуковые ракеты и управляемые боевые блоки ракет

Ранее разрабатывался ряд проектов экспериментальных и боевых крылатых (например, Х-90 в СССР) и некрылатых (например, Х-45 в СССР) ракет, достигающих гиперзвуковых скоростей.

  • 26 мая 2010 г. состоялось первое испытание гиперзвуковой крылатой ракеты США X-51 Waverider.
  • 20 апреля 2010 г. состоялось первое испытание планирующего гиперзвукового управляемого боевого блока США проекта DARPA Falcon HTV-2.
  • 18 ноября 2011 г. Минобороны США провело первое испытание планирующего гиперзвукового боевого блока другого проекта AHW[4].
  • В январе 2014 г. стало известно об испытаниях имеющего скорость до 10 Маха гиперзвукового боевого блока WU-14 в КНР.
  • 28 июня 2015 г. издание Washington Free Beacon опубликовало информацию о разработке и испытании в России гиперзвукового боевого блока Ю-71 (4202)[5][6][7] — первоначально боевой блок МБР «Сармат», вылившийся в самостоятельный проект (скорость до 11 Маха)[8].
  • 19 февраля 2016 г. сообщено о планах размещения гиперзвуковых противокорабельных ракет «Циркон» на российском тяжёлом атомном ракетном крейсере «Пётр Великий»[9]
  • «Кинжал» — базирующийся на самолётах МИГ-31 российский гиперзвуковой противокорабельный авиационно-ракетный комплекс, принят на опытное вооружение с 1 декабря 2017 г.
  • Гиперзвуковая крылатая ракета БраМос-2 предполагается совместной разработкой Индией и Россией.
  • 11 октября 2017 г. Украина на выставке «Зброя та безпека-2017» представила проект гиперзвуковой ракеты разработки КБ Южное[10].

Технологии и применение

ГЗЛА могут быть без двигателей или оснащаться различными типами двигательных установок:[11]жидкостными ракетными двигателями (ЖРД), гиперзвуковыми прямоточными воздушно-реактивными двигателями (ГПВРД), твердотопливными ракетными двигателями (РДТТ) (а также теоретически ядерными ракетными двигателями (ЯРД) и другими), в том числе комбинацией таких двигателей и ускорителей. То есть термин «гиперзвуковой» подразумевает способность аппарата двигаться с гиперзвуковой скоростью в воздушной среде, используя как двигатели, так и в той или иной форме воздух.

Учитывая потенциал технологии, организации по всему миру осуществляют исследования в области гиперзвукового полёта и развития

ГПВРД. По всей видимости, первое применение будет иметь место для управляемых военных ракет, потому как эта область требует только самолётный режим в диапазоне высот, а не ускорение до орбитальной скорости. Таким образом, основные средства на разработки в этой области идут именно в рамках военных контрактов.

Гиперзвуковые космические системы могут иметь, а могут не иметь преимущество от использования ступеней с ГПВРД. Удельный импульс или эффективность ГПВРД теоретически составляет от 1000 до 4000 секунд, в то время как в случае ракеты эта величина на 2009 год не превышает 470 секунд[12][13], что в принципе означает гораздо более дешёвый доступ в космос. Однако этот показатель будет быстро уменьшаться вместе с ростом скорости и также будет происходить ухудшение аэродинамического качества. Существенна проблема маленького отношения тяги ГПВРД к его массе,[14] которая составляет 2, что примерно 50 раз хуже этого показателя для

ЖРД. Частично это компенсируется тем, что затраты на компенсирование силы тяжести при фактически самолётном режиме несущественны, но более продолжительное нахождение в атмосфере означает бо́льшие аэродинамические потери.

Воздушное судно-авиалайнер с ГПВРД должно значительно сократить время путешествия из одной точки в другую, потенциально сделав достижимой любую точку Земли в пределах 90 минут. Однако при этом остаются вопросы по тому, смогут ли такие аппараты перевозить на себе достаточно топлива для совершения полётов на достаточно большие расстояния и смогут ли они летать на достаточной высоте, чтобы избежать связанных со сверхзвуковым полётом звуковых эффектов. Также остаются неопределёнными вопросы, связанные с общей стоимостью таких полётов и возможностью многократного использования аппаратов после гиперзвукового полёта.

Военное

[1]

Преимущества и недостатки в случае космических аппаратов

Преимущество гиперзвукового самолёта наподобие X-30 состоит в исключении или уменьшении количества транспортируемого окислителя. Например, внешний бак МТКК Спейс Шаттл на старте содержит 616 тонн жидкого кислорода (окислитель) и 103 тонн жидкого водорода (топливо). Сам космический челнок-космоплан при приземлении весит не более 104 тонн. Таким образом, 75 % всей конструкции составляет транспортируемый окислитель. Исключение этой дополнительной массы должно облегчить аппарат и, как можно надеяться, увеличить долю полезной нагрузки. Последнее можно считать основной целью изучения

ГПВРД вместе с перспективой уменьшения стоимости доставки грузов на орбиту.

Но имеются определённые недостатки:

Низкое отношение тяги к весу аппарата

Жидкостный ракетный двигатель («ЖРД») отличается очень высоким показателем тяги по отношению к его массе (до 100:1 и более), что позволяет ракетам достичь высоких показателей при доставке грузов на орбиту. Напротив, отношение тяги ГПВРД к его массе составляет порядка 2, что означает увеличение доли двигателя в стартовой массе аппарата (без учета необходимости уменьшить эту величину по крайней мере в четыре раза из-за отсутствия окислителя). Вдобавок наличие нижнего предела скорости ГПВРД и падение его эффективности с ростом скорости определяет необходимость использования на таких космических системах ЖРД со всеми их недостатками.

Необходимость дополнительных двигателей для достижения орбиты

Гиперзвуковые ПВРД имеют теоретический диапазон рабочих скоростей от 5-7 М вплоть до первой космической скорости 25 М, но как показали исследования в рамках проекта X-30, верхний предел устанавливается возможностью сгорания топлива в проходящем воздушном потоке и составляет порядка 17 М. Таким образом, требуется другая дополнительная система реактивного ускорения в нерабочем диапазоне скоростей. Поскольку необходимая разница восполнения скоростей незначительна, а доля ПН в стартовой массе гиперзвукового самолёта велика, применение дополнительных ракетных ускорителей различного типа является вполне приемлемым вариантом. Оппоненты исследований ГПВРД утверждают, что любая перспективность этого типа аппаратов может проявиться лишь для одноступенчатых космических систем. Сторонники этих исследований утверждают, что варианты многоступенчатых систем с использованием ГПВРД также оправданы.

Этап возвращения

Потенциально, нижняя часть тепловой защиты гиперзвукового космического аппарата должна быть увеличена вдвое в целях возвращения аппарата на поверхность. Использование абляционного покрытия может означать его потерю после выхода на орбиту, активная теплозащита с использованием топлива в качестве хладагента требует работы двигателя для своего функционирования.

Стоимость

Сокращение количества топлива и окислителя в случае гиперзвуковых аппаратов означает увеличение доли стоимости самого аппарата в общей стоимости системы. На самом деле, стоимость одного самолёта с ГПВРД может быть очень высокой по сравнению со стоимостью топлива, потому как стоимость аэрокосмического оборудования по крайней мере на два порядка выше, чем на жидкий кислород и баки к нему. Таким образом, аппараты с ГПВРД наиболее оправданы в качестве систем многоразового использования. Может ли оборудование многократно использоваться в экстремальных условиях гиперзвукового полёта остаётся не до конца ясным — все сконструированные до сих пор системы не предусматривали возвращение и их повторное использование.

Окончательная стоимость такого аппарата является предметом интенсивного обсуждения, потому как сейчас нет четкой убеждённости в перспективности таких систем. По всей видимости, для того чтобы быть экономически оправданным, гиперзвуковой аппарат должен будет обладать бо́льшей ПН по сравнению с ракетой-носителем с той же стартовой массой.

В произведениях искусства и массовой культуре

В фильмах
В других медиа
  • Истребитель «Mave» в японском анимационном фильме «Юкикадзе» имел режим в своем списке возможностей, называемый RAM-AIR, который, как утверждалось, был СПВРД, но по возможностям скорее соответствовал ГПВРД.
  • В эпизоде «Ящик Пандоры» в телешоу «Числа» телеканала CBS разбившийся самолёт перевозил ГПВРД в качестве незадекларированного груза.
  • Одна из опций выбора типа двигателя в игре Ace Combat X: Skies of Deception для самолёта с настраиваемым набором двигателей и других компонентов называется SCRAMjet.

См. также

Материалы

  1. Пышнов В. С. Полёт с большими докосмическими скоростями. ВВИА им. проф. Н. Е. Жуковского, 1959. — 59 с.
  2. Нестеренко Г. Н. Космическая авиация. М.: ВИ, 1969. — 60 с.
  3. Шкадов Л. М. и др. Механика оптимального пространственного движения летательных аппаратов в атмосфере. — М.: «Машиностроение», 1972. — 244 с.
  4. ↑ США испытали гиперзвуковую бомбу, Лента.ру (18 ноября 2011 года).
  5. ↑ Ю-71 — Российское новейшее гиперзвуковое маневрирующее средство доставки ядерных боеголовок // LiveInternet, 29.06.2015
  6. ↑ Россия испытала гиперзвуковой летательный аппарат // «Российская газета» — Проект «Русское оружие», 03.07.2015
  7. ↑ Объект «4202»: к берегам Америки на гиперзвуке // Свободная пресса
  8. ↑ Ю-71 — Российское новейшее гиперзвуковое маневрирующее средство доставки ядерных боеголовок/«Испытания Ю-71, Сирия» // Макспарк, 10.10.2015 (статья с видео программы «Военная тайна»)
  9. ↑ Источник: крейсер «Пётр Великий» в ходе модернизации получит гиперзвуковые ракеты (рус.). Армия и ОПК. ИТАР-ТАСС (19.02.2016). — «…крейсер получит на вооружение гиперзвуковые противокорабельные ракеты «Циркон». На данный момент ракеты проходят лётно-конструкторские государственные испытания… Параметры «Циркона» являются секретными. Открытые источники указывают, что дальность новой ракеты может составить до 400 километров, а скорость её полёта будет примерно в пять раз превышать скорость звука.». Проверено 19 февраля 2016.
  10. ↑ Гіперзвукова ракета України – міжнародна виставка “Зброя та безпека – 2017”
  11. ↑ Авиационные двигатели
  12. Kors, D.L. «Design considerations for combined air breathing-rocket propulsion systems.», AIAA Paper No. 90-5216, 1990.
  13. Varvill, R., Bond, A. A Comparison of Propulsion Concepts for SSTO Reuseable Launchers Архивная копия от 28 июня 2012 на Wayback Machine, JBIS, Vol 56, pp 108—117, 2003. Figure 8.
  14. ↑ Varvill, R., Bond, A. «A Comparison of Propulsion Concepts for SSTO Reuseable Launchers Архивная копия от 28 июня 2012 на Wayback Machine», JBIS, Vol 56, pp 108—117, 2003. Figure 7.

Ссылки

wikiredia.ru

Гиперзвуковые летательные аппараты | Военное оружие и армии Мира

Гиперзвуковые летательные аппараты, которые в ближайшем будущем достигнут технической зрелости, возможно, радикально изменят всю сферу ракетных вооружений. И в эту гонку России придется включаться, иначе возникнет риск потерять слишком много. Ведь речь идет ни много ни мало о научно-технической революции.

О гонке вооружений в данной сфере говорить пока рано — на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).

Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы — это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты — вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук — штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.

УДАР С ОРБИТЫ

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах — маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего имеются в виду следующие характеристики: скорость полета — 5-10 М [6150-12 300 км/ч] и выше, охватываемый рабочий диапазон высот — 25-140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов — это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов. Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 [6 М], самолет «Аякс» [8-10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета [6 М] на двух видах топлива — водороде для больших скоростей полета и керосине для меньших.

Оставил свой след в истории инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«ЦИРКОН» ДЛЯ ФЛОТА

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) «Циркон». Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота «Петр Великий». Скорость 5-6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км. Разработчик ПКР «Циркон» — НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».

ХИТРОУМНАЯ БОЕГОЛОВКА

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе] на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011-2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

ПОДНЯТЬСЯ ВВЫСЬ

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4-5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.

ГИПЕРЗВУК ПОДНЕБЕСНОЙ

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М. Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

ПРОЕКТЫ АМЕРИКИ

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon], гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА X-43 Hyper-X, прототип гиперзвуковой крылатой ракеты X-51A Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА 5R-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50-80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. 5R-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух—поверхность» в виде легких ракет без двигателя — он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000°С и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5-6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 — в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.