Загрязнение атмосферы серой – Загрязнение атмосферы Земли — это… Что такое Загрязнение атмосферы Земли?

Содержание

Загрязнение биосферы оксидами серы

Техногенные источники поступления оксидов серы в атмосферу — топливная энергетика (55 %), металлургическая промышленность (25 %), очистка и переработка нефти и угля (10 %), химическая промышленность, транспорт и другие виды хозяйственной деятельности человека (10 %).

Преимущественно загрязнение атмосферы оксидами серы происходит при сжигании топлива (нефти, угля, природного газа, древесины). В составе топлива сера не является главной составной частью. Количество серусодержащих соединений в нефти и угле может меняться от долей до 5—6 % и зависит и от типа его и от места добычи. Продуктом сгорания топлива является сернистый ангидрит, или диоксид серы, SO2.

Другим важным источником диоксида серы являются металлургическая промышленность, переработка полиметаллических руд. Металлы в рудах находятся преимущественно в форме сульфидов (пирит, галенит, сфалерит, цинковая обманка), значительно меньше их находится в форме сульфатов Fe, Mg, Ca. Сернистый ангидрид SO2 преобладает среди других газообразных соединений серы техногенного происхождения, по разным источникам, это превышение колеблется от 1,5—2 раз до 7—8 раз. Отходы некоторых заводов содержат 4—10 % SO

2.

Общепланетарное техногенное поступление диоксида серы в атмосферу, по разным источникам, составляет в среднем 140—290 млн т в год. Основная часть его депонируется в почве и в биоте, около 1/3 выносится в океаны. Предполагается, что в XXI в. выброс диоксида серы увеличится в 3—5 раз. 94 % выбросов SO2 приходится на северное полушарие, где сконцентрирована преимущественно мировая промышленность. В Европе главными его источниками являются промышленные комплексы Рурского бассейна Германии и Великобритания.

Антропогенная эмиссия оксидов азота и серы превышает природную эмиссию. Об этом свидетельствуют многочисленные ориентировочные оценки, полученные разными авторами. Абсолютные показатели в них не всегда совпадают, но отражают одну и ту же закономерность.

Техногенные выбросы диоксида серы влияют не только на окружающую среду с высокоразвитой промышленностью, но и на соседние с ними страны за счет трансграничного переноса. Дальность распространения газов в атмосфере составляет в среднем 300—400 км, может достигать 1—2 тыс. км. На территории многих стран Европы до половины и более от общего количества сернистых соединений поступает из соседних стран. Например, выпадение диоксидов серы в Люксембурге, Нидерландах, Швейцарии за счет трансграничного переноса достигает 71—78 % от их общего выпадения. В Скандинавских странах их поступление за счет переноса составляет 54—63 %. Поступление серы в атмосферу России из соседних западных стран составляет не менее 40 % от общего объема антропогенной нагрузки.

Поступление из атмосферы на земную поверхность загрязняющих веществ, в том числе веществ кислотной природы, происходит в результате процессов мокрого и сухого их осаждения. Мокрое выпадение кислотных осадков — основной путь осаждения из атмосферы антропогенных кислотных продуктов. При дефиците осадков доминирует выпадение твердых и газообразных осадков в форме сухого аэрозольного осаждения. Соотношение вклада влияния мокрого и сухого выпадения кислотных продуктов может быть различным. Например, в высокогорных европейских регионах поступление веществ кислотной природы на 80—90 % обусловлено мокрыми выпадениями сульфат ионов. Экспериментальные и расчетные данные о распространении соединений техногенной серы — продуктов деятельности комбината Североникель — показывают, что по мере приближения к источнику загрязнения доля сухих выпадений серы увеличивается от 20 до 80 %. При этом 80 % серы осаждается в пределах 30—100 км от комбината, 20 % ее распространяется на большие расстояния (Моисеенко, 2003).

Выпадения техногенной серы в индустриально развитых странах велики. На большей части европейской территории РФ ежегодные выпадения серы составляют 0,5—1,0 г/м2, в восточной части РФ они не выше 0,3—0,5 г/м2, а в индустриальных центрах превышают 2 г/м2 (Моисеенко, 2003). Например, на водосборных территориях Кольского полуострова, где действуют такие мощные источники серы, как металлургические комбинаты «Североникель» и «Печенганикель», ежегодные выпадения серы достигают 6 г/м2.

Фоновые уровни содержания сернистого ангидрида в атмосфере составляют 5—10 мкг/м3. ПДК разового поступления SO2 в воздухе составляет 500 мкг/м3, среднесуточный уровень ПДК равен 50 мкг/м3. Лишь на высоте 3—4 км в атмосфере нивелируется концентрация сернистого ангидрида. Во всех крупных городах за счет локальных источников загрязнения этот уровень содержания SO2 в атмосфере превышен.

Диоксид серы на организм человека и животных действует как местный раздражитель слизистой оболочки верхних дыхательных путей. Вдыхание воздуха, загрязненного SO2, вызывает у людей появление бронхоспазма.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

1.2 Загрязнение диоксидом серы.

Степень загрязнения атмосферы зависит от количества выбросов вредных веществ и их химического состава, от высоты, на которой осуществляются выбросы, и от климатических условий, определяющих перенос, рассеивание и превращение выбрасываемых веществ. 

Источники загрязнения атмосферы различаются по мощности выброса (мощные, крупные, мелкие), высоте выброса (низкие, средней высоты и высокие), температуре выходящих газов (нагретые и холодные). К мощным источникам загрязнения относятся производства типа металлургических и химических заводов, заводов строительных материалов, тепловые электростанции и др. К мелким источникам загрязнения - небольшие котельные и предприятия местной и пищевой промышленности, трубы печного отопления и т.п. Большое количество мелких источников может значительно загрязнять воздух. Под низкими источниками понимают такие, в которых выброс осуществляется ниже 50 м, под высокими - выброс выше 50 м. Нагретыми условно называют источники, у которых температура выбрасываемой газо-воздушной смеси выше 50 °С; при более низкой температуре выбросы считаются холодными.

Загрязняющие вещества поступают в атмосферу главным образом от природных источников и вследствие деятельности человека. Иногда это называют первичным загрязнением, в отличие от вторичного загрязнения, причиной которого являются химические изменения веществ в атмосфере.

После выхода из источника загрязнения не остаются в атмосфере в неизменном виде. Происходят физические изменения, особенно в процессе динамических явлений, таких как перемещение и распространение в пространстве, турбулентная диффузия, разбавление и т. д. Кроме того, в результате химических процессов в атмосфере также происходят изменения. Часто это лишь простые быстрые химические реакции ( например, окисление), температурные изменения, приводящие к конденсации некоторых газов и паров, сопровождающейся образованием туманов, капель и т.д. После длительного пребывания некоторых газообразных загрязняющих веществ в атмосфере они превращаются в твердые, чрезвычайно тонкодисперсные частицы. Солнечное изменение вызывает в атмосфере химические реакции между различными загрязняющими веществами и окружающей их средой.

Наиболее часто происходящий в атмосфере химический процесс – окисление веществ кислородом воздуха. Так, в атмосфере происходит окисление диоксида серы в триоксид и оксида азота в диоксид. Аналогичным образом окисляются многие органические вещества, например альдегиды до органических кислот, ненасыщенные углеводороды и множество других веществ.

атмосфере происходит под действием солнечного света значительно быстрее. Эта реакция описывается уравнением.

SO + O -----SO + O

Помимо трансформации диоксидом серы в серную кислоту и сульфаты сток ( вывод из атмосферы ) этих соединений происходит в результате мокрого ( с атмосферными осадками ) и сухого осаждения ( при контакте с поверхностью почвы, водоемы или с растительностью). Серная кислота является основным компонентом, приводящим к закислению атмосферных осадков. В первый момент после выброса диоксида серы в атмосфере отсутствует серная кислота и сульфаты. Через 10-15 часов после выброса образуется максимум серной кислоты. Содержание сульфатов будет возрастать в течение 40-50 часов. Опасность загрязнения атмосферы ,соединениями серы, связана с возможностью трансграничного переноса на большие расстояния).

В сухом чистом воздухе диоксид серы сохраняется в течение 2 – 4 или более дней, прежде чем полностью превратится в триоксид. При высокой влажности и в присутствии твердых веществ, катализирующих окисление, полупериод реакции составляет 10 – 20 мин. За это время половина серы превращается в триоксид. Однако вследствие кинетики этой реакции полное окисление второй половины может занять от нескольких суток. Помимо влажности и наличия суспендированных твердых частиц ускорить реакции окисления могут такие фактора как ультрофиолетовыое излучение, а также наличие сильных оксидантов либо их вторичное формирование. К этим веществам относится озон, пероксиды и атомарный кислород, которые образуются в ходе многих фотохимических реакций. Солнечный свет с длиной волны в диапазоне 290 – 700 нм является фотохимически эффективным, а вещества, поглощающие такое излучение, могут действовать как основные фоточувствительные датчики, которые переносят поглащенную энергию к молекулам веществ, способных претерпевать указанные превращения.

В число первичных веществ, поглащающх ультрофиолетовое излучение, входят сера, диоксид азота и альдегиды. Это излучение возбуждает молекулы указанных веществ, которые затем реагируют с молекулярным кислородом атмосферы с образованием атомарного кислорода. Диоксид серы поглащает излучение при длинах волн от 290 до 400 нм , так что окисление диоксида серы триоксид в

Реакции с участием диоксида серы протекают необратимо.

studfiles.net

Химическое загрязнение атмосферы

Под загрязнением атмосферы следует понимать изменение ее состава при поступлении примесей естественного или антропогенного происхождения. Вещества-загрязнители бывают трех видов: газы, пыль и аэрозоли. К последним относятся диспергированные твердые частицы, выбрасываемые в атмосферу и находящиеся в ней длительное время во взвешенном состоянии.

К основным загрязнителям атмосферы относятся углекислый газ, оксид углерода, диоксиды серы и азота, а также малые газовые составляющие, способные оказывать влияние на температурный режим тропосферы: диоксид азота, галогенуглероды (фреоны), метан и тропосферный озон.

Основной вклад в высокий уровень загрязнения воздуха вносят предприятия черной и цветной металлургии, химии и нефтехимии, стройиндустрии, энергетики, целлюлозно-бумажной промышленности, а в некоторых городах и котельные.

Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ, металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух окислы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.

Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170% ежегодно добываемого твердого и жидкого топлива.

Основными вредными примесями пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 250 млн. т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид. Выделяется в процессе сгорания серо-содержащего топлива или переработки сернистых руд (до 70 млн. т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 85 процентов от общемирового выброса.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ан гидрида.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

д) Оксиды азота. Основными источниками выброса являются предприятия, производящие; азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет 20 млн. т. в год.

е) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики. стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией.

В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на I т. предельного чугуна выделяется кроме 2,7 кг сернистого газа и 4,5 кг пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.

Объем выбросов загрязняющих веществ в атмосферу от стационарных источников на территории России составляет около 22 – 25 млн. т. в год.

studfiles.net

Загрязнение атмосферы - это... Что такое Загрязнение атмосферы?

Задымленность аэропорта Шереметьево от лесных пожаров 7 августа 2010 г.

Загрязнение атмосферы — привнесение в атмосферный воздух новых нехарактерных для него физических, химических и биологических веществ или изменение их естественной концентрации.

Основные загрязнители атмосферного воздуха:

Окись углерода (СО) – бесцветный газ, не имеющий запаха, известен также под названием «угарный газ». Образуется в результате неполного сгорания ископаемого топлива (угля, газа, нефти) в условиях недостатка кислорода и при низкой температуре. При этом 65% от всех выбросов приходится на транспорт, 21% - на мелких потребителей и бытовой сектор, а 14% - на промышленность[источник не указан 190 дней]. При вдыхании угарный газ за счёт имеющейся в его молекуле двойной связи образует прочные комплексные соединения с гемоглобином крови человека и тем самым блокирует поступление кислорода в кровь.

Двуокись углерода (СО2) – или углекислый газ, - бесцветный газ с кисловатым запахом и вкусом, продукт полного окисления углерода. Является одним из парниковых газов.

Диоксид серы (SO2) (диоксид серы, сернистый ангидрид) - бесцветный газ с резким запахом. Образуется в процессе сгорания серосодержащих ископаемых видов топлива, в основном угля, а также при переработке сернистых руд. Он, в первую очередь, участвует в формировании кислотных дождей. Общемировой выброс SO2 оценивается в 190 млн. тонн в год. Длительное воздействие диоксида серы на человека приводит вначале к потере вкусовых ощущений, стесненному дыханию, а затем – к воспалению или отеку лёгких, перебоям в сердечной деятельности, нарушению кровообращения и остановке дыхания.

Оксиды азота (оксид и диоксид азота) – газообразные вещества: монооксид азота NO и диоксид азота NO2 объединяются одной общей формулой NOх . При всех процессах горения образуются окислы азота, причем большей частью в виде оксида. Чем выше температура сгорания, тем интенсивнее идет образование окислов азота. Другим источником окислов азота являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения. Количество окислов азота, поступающих в атмосферу, составляет 65 млн. тонн в год. От общего количества выбрасываемых в атмосферу оксидов азота на транспорт приходится 55%, на энергетику – 28%, на промышленные предприятия – 14%, на мелких потребителей и бытовой сектор – 3%.

Озон (О3) – газ с характерным запахом, более сильный окислитель, чем кислород. Его относят к наиболее токсичным из всех обычных загрязняющих воздух примесей. В нижнем атмосферном слое озон образуется в результате фотохимических процессов с участием диоксида азота и летучих органических соединений.

Углеводороды – химические соединения углерода и водорода. К ним относят тысячи различных загрязняющих атмосферу веществ, содержащихся в несгоревшем бензине, жидкостях, применяемых в химчистке, прoмышленных растворителях и т.д.

Свинец (Pb ) – серебристо-серый металл, токсичный в любой известной форме. Широко используется для производства красок, боеприпасов, типографского сплава и т.п. Около 60% мировой добычи свинца ежегодно расходуется для производства кислотных аккумуляторов. Однако основным источником (около 80%) загрязнения атмосферы соединениями свинца являются выхлопные газы транспортных средств, в которых используется этилированный бензин.

Промышленные пыли в зависимости от механизма их образования подразделяются на следующие 4 класса:

  • механическая пыль – образуется в результате измельчения продукта в ходе технологического процесса;
  • возгоны – образуются в результате объёмной конденсации паров веществ при охлаждении газа, пропускаемого через технологический аппарат, установку или агрегат;
  • летучая зола – содержащийся в дымовом газе во взвешенном состоянии несгораемый остаток топлива, образуется из его минеральных примесей при горении;
  • промышленная сажа – входящий в состав промышленного выброса твёрдый высокодисперсный углерод, образуется при неполном сгорании или термическом разложении углеводородов.

Основными источниками антропогенных аэрозольных загрязнений воздуха являются теплоэлектростанции (ТЭС), потребляющие уголь. Сжигание каменного угля, производство цемента и выплавка чугуна дают суммарный выброс пыли в атмосферу, равный 170 млн. тонн в год [2].

См. также

Ссылки

dic.academic.ru

Загрязнение атмосферы

Привнесение в какую-либо среду новых, не характерных для нее в рассматриваемое время физических, химических и биологических агентов или превышение естественного среднемноголетнего уровня этих агентов в среде называется загрязнением. Основными источниками загрязнения атмосферного воздуха в индустриальных странах служат автомобили и другие виды транспорта и промышленные предприятия. Ежегодно в атмосферный воздух поступает более 200 млн. т оксида углерода, 151 млн. т оксида серы (IV) (сернистого газа), свыше 50 млн. т оксидов азота, более 50 млн. т различных углеводородов, более 250 млн. т мелкодисперсных аэрозолей и т. д. Только за счет сжигания угля в различных энергетических установках в окружающую среду в мире поступает ртути в 8700 раз> мышьяка в 125, урана в 60, кадмия в 40, бериллия и циркония в 10, олова и ванадия в 4 раза больше, чем их вовлекается в естественный биологический кругооборот на Земле за то же время (Добродеев Д. П., 1978). Самый чистый воздух над океаном. В деревнях и селах он содержит пылевидных примесей в 10 раз больше, над поселками и небольшими городами воздух грязнее в 35 раз, а над промышленными центрами плывут облака тяжелого смога. В них содержится пыли в 150 раз больше, чем над океаном. Загрязненный воздух над крупными городами простирается на высоту 1,5-2,0 км. Эта плотная шапка задерживает летом до 20% солнечных лучей, а зимой, когда и так мало света, поглощает половину его
В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются следующие:
а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 250 млн. т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.
б) Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 70 млн. т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65 процентов от общемирового выброса.
в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 1 км. от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.
г) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.
д) Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет 20 млн. т. в год.
е) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.
ж) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 1 т. предельного чугуна выделяется кроме 2,7 кг. сернистого газа и 4,5 кг. пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.

Аэрозольное загрязнение атмосферы

Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км. пылевидныхчастиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.
Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот.
Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС.
Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 2 тыс. куб. м. условного оксида углерода и более 150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные, включающие от 1 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц.
При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

Фотохимический туман (смог)

Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии.
Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид.
Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями (ПДК)

Приоритет в области разработки предельно допустимых концентраций в воздухе принадлежит СССР. ПДК - такие концентрации, которые на человека и его потомство прямого или косвенного воздействия, не ухудшают их работоспособности, самочувствия, а также санитарно-бытовых условий жизни людей. Обобщение всей информации по ПДК, получаемой всеми ведомствами, осуществляется в ГГО - Главной Геофизической Обсерватории. Чтобы по результатам наблюдений определить значения воздуха, измеренные значения концентраций сравнивают с максимальной разовой предельно допустимой концентрацией и определяют число случаев, когда были превышены ПДК, а также во сколько раз наибольшее значение было выше ПДК. Среднее значение концентрации за месяц или за год сравнивается с ПДК длительного действия среднеустойчивой ПДК. Состояние загрязнение воздуха несколькими веществами, наблюдаемые в атмосфере города, оценивается с помощью комплексного показателя - индекса загрязнения атмосферы (ИЗА). Для этого нормированные на соответствующее значения ПДК и средние концентрации различных веществ с помощью несложных расчетов приводят к величине концентраций сернистого ангидрида, а затем суммируют.
Максимальные разовые концентрации основных загрязняющих веществ были наибольшими в Норильске (окислы азота и серы), Фрунзе (пыль), Омске (угарный газ). Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Наибольшие максимальные концентрации характерны для городов с численностью населения более 500 тыс. жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха, однако проблема снижения выбросов многих специфических веществ до сих пор остается нерешенной
Загрязнение атмосферы оказывает неблагоприятное воздействие не только на человека, но и на флору и фауну, на различного рода сооружения, транспортные средства и др. На территорию Северной Швеции и Норвегии серы выпадает в 2-2,5 раза больше, чем выбрасывается в воздушный бассейн с этих территорий. В то же время во многих промышленных странах Западной Европы, в частности в Великобритании и Голландии, отношение выпадений серы к выбросам составляет лишь 10-20%, а в ФРГ, Франции и Дании - 20-45%.
Следовательно, остальная часть выбросов переносится воздушными потоками. Опасность выбросов сернистых соединений заключается прежде всего в их массовости, токсичности и сравнительно большом общем "сроке жизни". "Продолжительность жизни" сернистого газа в атмосфере сравнительно невелика: от двух-трех недель, если воздух сравнительно сухой и чистый, до нескольких часов, если воздух влажен и в нем присутствует аммиак или некоторые другие примеси. Но он растворяется в каплях атмосферной влаги. В результате каталитических, фотохимических и других реакций окисляется и образует раствор серной кислоты. Следовательно, агрессивность выбросов возрастает. В конечном счете переносимые воздушными массами сернистые соединения переходят в форму сульфатов. Их перенос в основном происходит на высоте от 750 до 1500 м, где средние скорости перемещения воздушных масс близки к 10 м/с.
Поэтому дальность переноса сернистого газа 300-400 км. На этом же удалении от источника выбросов в струе переноса отмечается максимум концентрации раствора серной кислоты. Ее обнаруживают и на расстоянии 1000-1500 км, где в основном завершается ее переход в сульфаты. Описанный процесс - упрощенная схема, не учитывающая возможности вымывания сернитого газа и серной кислоты по пути переноса каплями дождя, а также абсорбирования их растительностью, почвой, поверхностными и морскими водами. Воздействие сернистого газа и его производных на человека и животных проявляется прежде всего в поражении верхних дыхательных путей.
Под влиянием сернистого газа и серной кислоты происходит разрушение хлорофилла в листьях растений, в связи с чем ухудшаются фотосинтез и дыхание, замедляется рост, снижаются качество древесных насаждений и урожайность сельскохозяйственных культур, а при более высоких дозах и продолжительном воздействии растительность погибает. Так называемые кислые дожди вызывают повышение кислотности почв. В итоге снижается эффективность применяемых минеральных удобрений на пахотных землях, из видового состава трав на долголетних культурных сенокосах и пастбищах выпадают наиболее ценные. Особенно сильное влияние кислые осадки оказывают на дерново-подзолистые и торфяные почвы, широко распространенные в северной части Европы.
Наличие в воздухе соединений серы ускоряет процессы коррозии металлов, разрушения зданий, сооружений, памятников истории и культуры, ухудшает качество промышленных изделий и материалов. Установлено, что в промышленных районах сталь ржавеет в 20 раз, а алюминий разрушается в 100 раз быстрее, чем в сельской местности. Увеличение задымленности воздуха ведет к ухудшению микроклимата города: увеличению числа туманных дней, уменьшению прозрачности атмосферы и, следовательно, к снижению видимости, освещенности, ультрафиолетовой радиации. Утром 26 октября 1948 г. густой туман - смог - окутал г. Донора (штат Пенсильвания, США). Из смеси тумана с дымом и копотью начала выпадать сажа, покрывшая дома, тротуары и мостовые черным покрывалом.
Двое суток видимость была настолько плохой, что жители с трудом находили дорогу домой. Вскоре врачей стали осаждать кашлящие и задыхающиеся пациенты, жаловавшиеся на нехватку воздуха, насморк, резь в глазах, боль в горле и тошноту. В течение следующих четырех дней, пока не начался сильный дождь, заболело 5910 человек из 14 тыс. жителей города. Двадцать человек умерло. Погибло много собак, кошек и птиц. Исследуя причины этой трагедии, метеорологи установили, что она вызвана температурной инверсией, которая препятствовала нормальной циркуляции воздуха. Обычно теплый воздух поднимается от земли в вышележащие холодные области, унося с собой значительную часть загрязняющих воздух продуктов деятельности человека.
Изредка слой теплого воздуха образуется вблизи от земли над холодным слоем, возникает температурная инверсия, следствием которой является нарушение циркуляции воздуха. В результате ядовитые выделения скапливаются непосредственно над землей. Лондонский смог (смесь дыма и тумана) 1952 г. за три-четыре дня погубил более 4 тыс. человек. Сам по себе туман не опасен для человеческого организма. Он становится вредным, когда чрезмерно загрязнен токсическими примесями. 5 декабря 1952 г. над всей Англией возникла зона высокого давления и в течение нескольких дней сохранялась безветренная погода.
Однако трагедия разыгралась только в Лондоне, где была высокая степень загрязнения атмосферы. Английские специалисты определили, что смог 1952 г. содержал несколько сот тонн дыма и сернистого ангидрида. При сопоставлении загрязненности атмосферного воздуха в Лондоне в эти дни с уровнем смертности было отмечено, что смертность увеличилась прямо пропорционально концентрации в воздухе дыма и сернистого газа.
Главный действующий компонент смога лондонского типа - сернистый газ (5-10 мг/м3 и выше). В смоге лондонского типа практически не образуется каких-либо новых веществ. Его токсичность целиком определяется исходными загрязнителями. Возникает он при сжигании достаточно больших количеств топлива. Особенно тяжелое положение сложилось в Лос-Анджелесе, где с 30-х годов в теплое время года, как правило летом и ранней осенью, стал появляться сухой туман с влажностью около 70%. Этот туман называют фотохимическим смогом. Фотохимический туман может возникать при более низких концентрациях загрязнителей, чем лондонский смог, и для него более характерна желто-зеленая или сизая сухая дымка, а не сплошной туман.
При смоге появляется неприятный запах, резко ухудшается видимость. Погибают домашние животные, главным образом собаки и птицы. У людей фотохимический смог вызывает раздражение глаз, слизистых оболочек носа и горла, симптомы удушья, обострение легочных и различных хронических заболеваний. Смог оказывает вредное влияние и на растения, особенно на салатные культуры, бобы, свеклу, злаки, виноград, декоративные насаждения. Сначала наблюдается набухание листьев. Через некоторое время нижние поверхности листьев приобретают серебристый или бронзовый оттенок, а на верхних появляются пятнистость и белые налеты. Затем наступает быстрое увядание растения.
Фотохимический туман вызывает коррозию материалов и элементов зданий, растрескивание красок, резиновых и синтетических изделий, порчу одежды. Из-за плохой видимости нарушается работа транспорта. Явно выраженный сильный фотохимический туман наблюдается в Лос-Анджелесе более 60 дней в году. Отсюда и пошла печальная слава этого города как родины фотохимического тумана - явления, искусственно созданного человеком. Основной причиной образования фотохимического тумана является сильное загрязнение городского воздуха газовыми выбросами предприятий химической промышленности и транспорта и главным образом выхлопными газами автомобилей.
На каждом километре пути легковой автомобиль выделяет около 10 т оксида азота. В Лос-Анджелесе, где скопилось свыше 3 млн. автомобилей, они выбрасывают в воздух около 1 тыс. т этого газа в сутки. Кроме того, здесь часты температурные инверсии (до260 дней в году), способствующие застою воздуха над городом. Фотохимический туман возникает в загрязненном воздухе в результате фотохимических реакций, протекающих под действием коротковолновой (ультрафиолетовой) солнечной радиации на газовые выбросы. В процессе этих реакций возникают вещества, значительно превосходящие исходные по своей токсичности. Основные компоненты фотохимического смога - фотооксиданты (озон, органические перекиси, нитраты, нитриты, пероксилацетилнитрат), оксиды (IV) азота, оксид (II) и оксид (IV) углерода, углеводороды, альдегиды, кетоны, фенолы, метанол и т. д. Эти вещества в меньших количествах всегда присутствуют в воздухе больших городов, в фотохимическом смоге их концентрация часто намного превышает предельно допустимые нормы. Многие зарубежные крупные города (Нью-Йорк, Чикаго, Бостон, Детройт, Токио, Милан) подвержены лос-анджелесскому смогу. В крупных американских городах концентрация озона иногда достигает 2-3 мг/м3 и выше. Это в 100-200 раз больше, чем в чистом природном воздухе.
Однако и сравнительно более низкие концентрации озона оказывают вредные воздействия на человека. В Советском Союзе явлений, подобных фотохимическому туману, не наблюдалось. По данным В. А. Попова, содержание фотооксидантов в атмосферном воздухе Москвы, Баку и Батуми значительно ниже, чем в городах США. Однако условия для возникновения смога могут создаться. Число автомашин растет так быстро, что при наличии достаточной ультрафиолетовой радиации в атмосфере наших городов могут иметь место те же процессы, что отмечены выше. К факторам, оказывающим неблагоприятное влияние на организм человека, относятся также соединения свинца, содержащиеся в выхлопных газах автотранспорта. В атмосферном воздухе свинец содержится почти исключительно в виде неорганических соединений. Количество свинца в крови человека возрастает с увеличением его содержания в воздухе.
Последнее ведет к снижению активности ферментов, участвующих в насыщении крови кислородом, и, следовательно, к нарушению обменных процессов в организме. В литературе имеются данные о связи конкретных уровней загрязнения атмосферы с легочной патологией. Так, в исследовании, выполненном в Чикаго, указывается на обострение хронического бронхита при разных уровнях загрязнения воздуха сернистым газом. Ниже приведена зависимость обострения хронического бронхита от уровня загрязнения воздуха сернистым газом (Сагпаш а. оШ.): Концентрация сернистого газа, мг/л13 0,13 0,26 0,39 0,52 0,66 0,78 0,78 и выше Процент обострений хронического бронхита (в человеко-днях) 13,0 17,1 18,7 18,2 18,6 22,1 26,5 Многие исследователи подчеркивают связь детской заболеваемости (в первую очередь органов дыхания) со степенью загрязнения атмосферного воздуха сернистым газом. В Англии была проанализирована заболеваемость большой группы детей (3866 человек) с момента их рождения до 15 лет. Оказалось, что значительные подъемы в частоте респираторных заболеваний, как правило, наблюдались в те дни, когда уровни среднегодовых концентраций сернистого газа и дыма превышали 0,13 мг/м3.
Согласно его исследованиям при загрязнении воздуха сернистым газом- в концентрации до 0,049 мг/м3 показатель заболеваемости (в человеко-днях) взрослого населения Нашвилла (США) составлял 8,1%, при уровне загрязнения 0,150- 0,349 мг/м3 он был равен 12,0%, в районах с загрязнением воздуха выше 0,350 мг/м3 он возрастал до 43,8%. Японские исследователи также показали, что бронхиальной астмой наиболее часто заболевают в районах со значительным загрязнением атмосферного воздуха сернистым газом, причем частота случаев астмы возрастает прямо пропорционально росту концентраций сернистого газа. Загрязнение атмосферного воздуха таит в себе не только угрозу здоровью людей, но и наносит большой экономический ущерб. Так, ядовитые вещества воздуха отравляют домашний скот во Флориде, обесцвечивают краску на стенах домов и корпусах автомашин в Линкольне (штат Мэн), под их влиянием гибнут сосны, растущие в 60 милях от Лос-Анджелеса, а также фруктовые сады в Техасе и Иллинойсе, шпинат на юге Калифорнии. За загрязнение воздуха американцы ежегодно расплачиваются миллиардами долларов.
Согласно оценкам Агентства по охране окружающей среды экономические потери от смертности и заболеваний в связи с загрязнением воздушной среды в США составляют ежегодно 6 млрд. долларов. Эта цифра включает и ущерб от утраты трудоспособности, а также расходы на соответствующее медицинское обслуживание. Ущерб, наносимый ежегодно экономике страны в результате коррозии и разрушения материалов, гибели растений и сокращения урожайности сельскохозяйственных культур, оценивается в 4,9 млрд. долларов. Общий экономический ущерб от загрязнения атмосферы в США составляет, по расчетам Агентства по охране окружающей среды, 16 млрд. долларов в год

neparsya.net

Основные источники загрязнения атмосферы

Рассмотрим основные источники загрязнения атмосферы. В настоящее время выделяют две большие группы: антропогенные и естественные. Для каждой из них характерны свои отличительные особенности и характеристики.

Природные виды

Естественные источники загрязнения атмосферы – это те группы, которые обладают растительной, минеральной или микробиологической природой. Что можно привести в качестве примера? Это пыльца растений, экскременты животных, пыль, продукты извержения вулканов. Влиять на данные источники загрязнения атмосферы у человека нет возможности. Единственное, что в силах человечества, использовать оптимальные методы для снижения негативного воздействия от них на здоровье населения.

Искусственные виды

Антропогенные источники загрязнения атмосферы – это продукты жизнедеятельности человека, попадающие в земную атмосферу. Существует их подразделение на несколько групп, каждая из которых заслуживает детального рассмотрения и изучения.

Транспортные загрязнители

Из-за существенного ухудшения экологической ситуации на нашей планете, необходимо искать альтернативные источники энергии, при сгорании которых не будут выделяться в большом количестве оксиды углерода. Автомобиль - источник загрязнения атмосферы. По результатам социологических исследований выяснено, что в некоторых странах на одну семью приходится 1-2 транспортных средства. Миллионы транспортных средств сегодня передвигаются по улицам крупных городов, а в воздухе возрастает содержание ядовитых выхлопных газов. В российских городах автомобильные выбросы СО/СН в атмосферу давно уже превысили выбросы от работы огромных производственных цехов. Суммарная мощность автомобильных двигателей в нашей стране намного выше установленной мощности всех тепловых электростанций страны. Такие источники загрязнения атмосферы воздуха – серьезная опасность для здоровья населения.

В составе автомобильных выхлопных газов есть множество разных веществ. В них содержатся углеводороды — не сгоревшие или не полностью сгоревшие части топлива, количество которых существенно увеличивается при работе двигателя на малых оборотах.

Серьезную опасность представляют и те промежутки времени, когда автомобиль начинает резко трогаться с места. При нажатии водителем на педаль газа, в атмосферу выделяется в десять раз больше несгоревших химических соединений, чем в процессе деятельности двигателя в стандартном режиме.

Эти искусственные источники загрязнения атмосферы негативно действуют на психическое состояние человека.

Вред от бензинового двигателя

Это особый вид поршневого двигателя внутреннего сгорания, в котором процесс воспламенения воздушной и топливной смеси в цилиндрах происходит в принудительном порядке при помощи электрической искры. В бензиновых двигателях в качестве топлива применяется бензин.

Источником загрязнения атмосферы являются углеводороды, входящие в состав данного вида топлива.

Четырехтактный двигатель — это поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два полных оборота коленчатого вала, то есть за четыре хода поршня, именуемых тактами.

Состав выхлопных газов

Рассмотрим подробнее эти источники загрязнения атмосферы. В выхлопных газах двигателя, функционирующего на качественном бензине, содержится около 2,7 % оксида углерода. В случае понижения скорости, такой показатель увеличивается до 3,9 %, а на малых оборотах он достигает 6,9 %. Угарный газ при образовании химических соединений с гемоглобином крови, негативно воздействует на процесс перенос кислорода в разные ткани организма. В составе выхлопных газов присутствуют альдегиды, которые обладают неприятным резким запахом, вызывающих аллергическую реакцию.

Серьезным источником загрязнения атмосферы являются непредельные углеводороды этиленового ряда: гексены, пентены. Эти органические соединения, содержащиеся в выхлопных газах, угнетают центральную нервную систему человека, вызывают приступы агрессии и раздражительности.

Максимальное количество различных смол и сажи образуется в том случае, если в работающем бензиновом двигателе есть серьезные неисправности.

Эти источники загрязнения атмосферы особенно опасны в тот момент, когда водитель, увеличивает работу бензинового двигателя, снижая при этом соотношение воздуха и горючего, пытаясь создать «богатую бензиновую смесь». В таких ситуациях за транспортным средством тянется хвост из дыма, в котором находится существенное количество полициклические углеводороды, например, бензапирен.

Если естественные источники загрязнения атмосферы появляются периодически, то выхлопные газы оказывают постоянное негативное действие на Землю, планомерно разрушая ее атмосферу.

Воздействие СО/СН на атмосферу и здоровье человека

Мы уже определили некоторые источники и последствия. Загрязнение атмосферы приводит к уничтожению зеленых растений, появлению множества генетических болезней. Всему виной выхлопные газы. Остановимся на данном вопросе подробнее.

Ученым удалось выяснить, что при попадании существенного количества выхлопных газов в земную атмосферу, возникают серьезные проблемы с развитием плода в утробе матери, причем и на поздних, и на ранних сроках беременности.

При расположении населенных пунктов вблизи крупных автомобильных трасс, по которым передвигаются транспортные средства с бензиновыми двигателями, у женщин часто рождаются малыши с серьезными отклонениями здоровья.

Это интересно

Американские ученые в ходе исследований выяснили, что выхлопные газы наносят значительный ущерб нейронам, которые воздействуют на функционирование головного мозга, вызывают снижение памяти. Они приводят и к воспалению, которое связано с преждевременным старением и развитием болезни Альцгеймера. Частицы несгоревших углеводородов в выхлопных газах малы по размерам, поэтому они не улавливаются системой фильтрации автомобилей. К сожалению, ученым пока не удалось найти эффективный способ защиты населения от негативного воздействия продуктов сгорания бензинового топлива.

Альтернативные варианты двигателей

Так как основные источники загрязнения атмосферы, рассмотренные выше, являются серьезной угрозой для человечества, ученые долгое время работали над созданием электрического двигателя, не предполагающего использования бензина в процессе своего функционирования. Электрический двигатель представляет собой установку, в которой происходит превращение электрической энергии механическую работу, а также наблюдается выделение тепла. Состоит такая система из двух частей: неподвижного статора, вращающегося ротора.

Многие инженеры именуют электрические двигатели транспортом с нулевым выбросом в атмосферу углекислого газа. Его коэффициент полезного действия достигает 95 % (у бензинового данный показатель не превышает 60 %). Среди преимуществ электрического двигателя выделим незначительные расходы на обслуживание, эксплуатацию таких транспортных средств.

Проанализировав, каковы источники загрязнения атмосферы, как они связаны с составом топлива, можно сделать вывод, что электромобили - оптимальный вариант для экологии.

Нет необходимости ставить в них механические тормоза, а ведь именно при остановке транспортного средства, в атмосферу выделяется значительное количество выхлопных газов.

Экологические аспекты электрического двигателя

При производстве аккумуляторных батарей используют определенные химикаты для их обработки. Например, такие химические источники загрязнения атмосферы, как гексафторид (SF6) в 20 000 раз опаснее для глобального потепления климата, чем углекислый газ. Но данное вещество, применяемое в электрических двигателях, по объему существенно меньше, а потому, электрические двигатели по праву можно считать экологически безопасными видами.

Чтобы понять, какова разница между бензиновыми машинами и электромобилями, проведем сравнительные вычисления.

Так как главные источники загрязнения атмосферы связаны с бензиновым транспортом, предположим, что для передвижения машины на 64 километра необходимо 3,785 литра жидкого топлива. Для прохождения такого пути машиной с электрическим двигателем, потребуется 10 кВт*ч энергии. В процессе сгорания 3,785 л бензина, в земную атмосферу выделяется 8,887 грамма углекислого газа. В ходе выработки альтернативных 10 кВт * ч электрической энергии, включая процесс добычи, производства, передачу и сжигание, образуется 900 г CO2 для гидроэлектростанций, 550 г для солнечных станций, 150 г для атомной энергетики.

Электромобили не оказывают негативного воздействия на нервную систему человека, не мешают живым организмам полноценно дышать, радоваться чистому воздуху.

При продумывании технологий переработки использованных электрических батарей, такие типы двигателей станут оптимальным вариантом для улучшения экологической ситуации на Земле.

Производственные выбросы

Анализируя основные источники загрязнения атмосферы, необходимо остановиться и на разнообразных технологических процессах, необходимых для обеспечения населения химическими средствами, одеждой, продуктами питания, бытовыми приборами, тепловой энергией. В настоящее время доля промышленных выбросов в атмосферу снижается, так как на крупных предприятиях устанавливаются эффективные газоулавливающие установки. В нашей стране промышленные выбросы в атмосферу регулируются на законодательной основе, что также способствует снижению вредных химических выбросов.

Бытовые загрязнители

В эту группу включают соединения, которые формируются при переработке разнообразных бытовых отходов, а также попадают в земную атмосферу в процессах сгорания. Их доля в объеме намного меньше выбросов от транспорта, функционирования промышленных предприятий.

Варианты классификации

Если школьникам предлагается вопрос: «Назовите источники загрязнения атмосферы», они, отвечая на него, пользуются подразделением таких веществ на несколько групп. Рассмотрим некоторые из критериев, используемых для подобной классификации:

  1. По составу. Выделяют механические примеси, такие как пыль, получаемую в процессе сгорания твердотопливных соединений, изготовлении цемента. Сюда же включается сажа, компоненты шин, трущихся о дорожное покрытие.
  2. Химические загрязнители, находящиеся в газообразном либо твердом состоянии, способствуют протеканию процессов, продукты которых негативно воздействуют на атмосферу. Среди них: аммиак, оксиды азота, диоксид серы, альдегиды, кетоны.
  3. К радиоактивным источникам относят изотопы и радиацию.
  4. Биологические загрязнители воздушной оболочки – это грибковые, микробные, вирусные организмы.

Заключение

В настоящее время земная атмосфера подвергается атакам со стороны разнообразных загрязнителей. По своей природе они могут быть естественного, искусственного происхождения. Остановимся на процессах, связанных с извержением вулканов. В земных недрах осуществляются процессы, результатом которых становится образование разнообразных соединений органической и неорганической природы.

Во время извержения вулкана, помимо пыли и иных твердых компонентов, в атмосферу попадает множество соединений: сероводород, оксиды серы, сульфаты. Эти загрязнители не предсказуемы, а потому, человек не может воздействовать на них.

В последнее время вопросам, касающимся снижения негативных выбросов в земную атмосферу, уделяется особое внимание во всем мире. Существует множество международных организаций, основной целью деятельности которых является поиск оптимальных методов и средств защиты флоры и фауны от химических, промышленных, естественных загрязнений.

Среди тех эффективных мер, которые позитивно отражаются на снижении выбросов угарного газа, соединений серы, азота, можно назвать постепенный переход на качественное топливо, а также частичный отказ от бензиновых двигателей. Многие крупные автомобильные концерны разрабатывают электрические и водородные двигатели, при работе которых не выделяются в атмосферу вредные химические вещества.

fb.ru

Загрязнение атмосферы, Химическое загрязнение атмосферы

311 Химическое загрязнение атмосферы

Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них - газообразные и аэрозольные загрязнители промышленно-бытового происхождения. Человек заб бруднюе атмосферу уже тысячелетиями, однако, последствия применения огня, которым он пользовался весь этот период, были незначительны. Приходилось мириться с тем, что дым мешал дыханию и что сажа ложилась черни м покровом на потолке и стенах жилища. Получаемое тепло было для человека важнее, чем чистый воздух и не закопченные стены пещеры. Это начальное загрязнение воздуха не представляло проблемы, ибо люди обитали тогда небольшими группами, занимая неизмеримо обширную нетронутую природную среду. И даже значительное сосредоточение людей на сравнительно небольшой территории, как это было в классической древности, не сопровождения джувалося еще серьезными последствиямідками.

Так было вплоть до начала девятнадцатого века. Лишь за последние сто лет развитие промышленности"одарило"нас такими производственными процессами, последствия которых человек сначала еще не мог себе представить

В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в залежнос сти от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газы; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и ц ементни заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. А тмосферни загрязнения разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, сернистый газ поступает в атмосферу, окисляется до си рчаного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате хими них, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электрос танции, металлургические и химические предприятия, котельные установки, потребляющие более 70% твердого и жидкого топлива, добываемого ежегодно. Основными вредными примесями пирогенного происхождения нас топнетє наступні.

A). Оксид углерода

Возникает при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами автомобилей и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн т оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффек текту.

Б). Сернистый ангидрид

Выделяется в процессе сгорания топлива, содержащего серу, или переработки сернистых руд (до 170 млн т в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Т. Только в. США общее количество выброшенного в атмосферу сернистого ангидрида составляет 65% от общемирового выбросакиду.

B). Серный ангидрид

Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, подкисляет почву, обостряет заболевания дыхательных путей человека. Вып падения аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при наличии низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии и меньше 11км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Металлургические предприятия цветной и черной металлургии, а также. ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидридадриду.

Г). Сероводород и сероуглерод

Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидридду.

Д). Окислы азота

Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту, нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество окислов азота, поступающих в атмо осферу, составляет 20 млн т в рерік.

Е). Соединения фтора

Источниками загрязнения являются предприятия по производству алюминия, эмали, стекла, керамики, стали, фосфорных удобрений. Вещества, содержащие фтор, поступают в атмосферу в виде газообразных соединений - фтор угля лецю или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидамами.

Ж). Соединения хлора

Поступают в атмосферу от химических предприятий, производящих соляную кислоту, пестициды, содержащие хлор, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь ки, молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрациейєю.

В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 1 т передельного чугуна выделение ся кроме 12,7 кг сернистого газа и 14,5 кг пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водородаодню.

uchebnikirus.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *