Атомная бомба как работает – Атомная бомба: как она работает и зачем нужна | MANSDEN

Содержание

Как работает атомная бомба

Популярная механикаОбщество

Об истории ядерного противостояния сверхдержав и конструкции первых ядерных бомб написаны сотни книг. А вот о современном ядерном оружии ходит много мифов. «Популярная механика» решила внести ясность в этот вопрос и рассказать, как работает самое разрушительное оружие, придуманное человеком.

Александр Прищепенко

Взрывной характер

Ядро урана содержит 92 протона. Природный уран представляет собой в основном смесь двух изотопов: U238 (в ядре которого 146 нейтронов) и U235 (143 нейтрона), причем последнего в природном уране лишь 0,7%. Химические свойства изотопов абсолютно идентичны, потому и разделить их химическими методами невозможно, но различие в массах (235 и 238 единиц) позволяет сделать это физическими методами: смесь уранов переводят в газ (гексафторид урана), а затем прокачивают через бесчисленные пористые перегородки. Хотя изотопы урана не отличимы ни по внешнему виду, ни химически, их разделяет пропасть в свойствах ядерных характеров.

Процесс деления U238 — платный: прилетающий извне нейтрон должен принести с собой энергию — 1 МэВ или более. А U235 бескорыстен: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре.

Цепная реакция. При попадании нейтронов ядро урана-235 легко делится, образуя новые нейтроны. При определенных условиях начинается цепная реакция.

При попадании нейтрона в способное к делению ядро образуется неустойчивый компаунд, но очень быстро (через 10−23−10−22 с) такое ядро разваливается на два осколка, не равных по массе и «мгновенно» (в течение 10−16−10−14 с) испускающих по два-три новых нейтрона, так что со временем может размножаться и число делящихся ядер (такая реакция называется цепной). Возможно такое только в U235, потому что жадный U238 не желает делиться от своих собственных нейтронов, энергия которых на порядок меньше 1 МэВ. Кинетическая энергия частиц — продуктов деления на много порядков превышает энергию, выделяющуюся при любом акте химической реакции, в которой состав ядер не меняется.

Металлический плутоний существует в шести фазах, плотности которых от 14,7 до 19,8 кг/см3. При температуре ниже 119 градусов Цельсия существует моноклинная альфа-фаза (19,8 кг/см3), но такой плутоний очень хрупок, а в кубической гранецентрированной дельта-фазе (15,9) он пластичен и хорошо обрабатывается (именно эту фазу и стараются сохранить с помощью легирующих добавок). При детонационном обжатии никаких фазовых переходов быть не может — плутоний находится в состоянии квазижидкости. Фазовые переходы опасны при производстве: при больших размерах деталей даже при незначительном изменении плотности возможно достижение критического состояния. Конечно, произойдет это без взрыва — заготовка просто раскалится, но может произойти сброс никелирования (а плутоний очень токсичен).

Критическая сборка

Продукты деления нестабильны и еще долго «приходят в себя», испуская различные излучения (в том числе нейтроны). Нейтроны, которые испускаются через значительное время (до десятков секунд) после деления, называют запаздывающими, и хотя доля их по сравнению с мгновенными мала (менее 1%), роль, которую они играют в работе ядерных установок, — важнейшая.

Забытое старое. Взрывные линзы создавали сходящуюся волну. Надежность обеспечивалась парой детонаторов в каждом блоке.

Продукты деления при многочисленных столкновениях с окружающими атомами отдают им свою энергию, повышая температуру. После того как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а параметры сборки, в которой число делений в единицу времени постоянно, называют критическими. Критичность сборки может поддерживаться и при большом, и при малом числе нейтронов (при соответственно большей или меньшей мощности тепловыделения). Тепловую мощность увеличивают, либо подкачивая в критическую сборку дополнительные нейтроны извне, либо делая сборку сверхкритичной (тогда дополнительные нейтроны поставляют все более многочисленные поколения делящихся ядер). Например, если надо повысить тепловую мощность реактора, его выводят на такой режим, когда каждое поколение мгновенных нейтронов чуть менее многочисленно, чем предыдущее, но благодаря запаздывающим нейтронам реактор едва заметно переходит критическое состояние. Тогда он не идет в разгон, а набирает мощность медленно — так, что прирост ее можно в нужный момент остановить, введя поглотители нейтронов (стержни, содержащие кадмий или бор).

Плутониевая сборка (шаровой слой в центре) была окружена корпусом из урана-238, а затем слоем алюминия.

Образующиеся при делении нейтроны часто пролетают мимо окружающих ядер, не вызывая повторного деления. Чем ближе к поверхности материала рожден нейтрон, тем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно. Поэтому формой сборки, сберегающей наибольшее количество нейтронов, является шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар из 94% U235 без полостей внутри становится критичным при массе в 49 кг и радиусе 85 мм. Если же сборка из такого же урана представляет собой цилиндр с длиной, равной диаметру, она становится критичной при массе в 52 кг. Поверхность уменьшается и при возрастании плотности. Поэтому-то взрывное сжатие, не меняя количества делящегося материала, может приводить сборку в критическое состояние. Именно этот процесс и лежит в основе распространенной конструкции ядерного заряда.

В первых ядерных зарядах в качестве источника нейтронов использовались полоний и бериллий (в центре).

Шаровая сборка

Но чаще всего в ядерном оружии применяют не уран, а плутоний-239. Его получают в реакторах, облучая уран-238 мощными нейтронными потоками. Плутоний стоит примерно в шесть раз дороже U235, но зато при делении ядро Pu239 испускает в среднем 2,895 нейтрона — больше, чем U235 (2,452). К тому же вероятность деления плутония выше. Все это приводит к тому, что уединенный шар Pu239 становится критичным при почти втрое меньшей массе, чем шар из урана, а главное — при меньшем радиусе, что позволяет уменьшить габариты критической сборки.

kiozk.ru

Как работает атомная бомба?: conymac

А вот вопрос - может ли некий террорист, имея килограмм.. ну или 100 килограмм урана соорудить из него что-нибудь взрывоопасное?

Итак, как же работает атомная бомба? Вспоминаем школьный курс физики. Взрыв есть выделение большого количества энергии за короткий промежуток времени. Откуда берется энергия. Энергия возникает из распада ядра атома. Атомы урана или плутония неустойчивы, и потихоньку стремятся развалиться на атомы более легких элементов, при этом разлетаются лишние нейтроны и выделяется некоторое количество энергии. Ну, вспоминается? Есть еще период полураспада - этакая статистическая величина, промежуток времени, за который "развалится" примерно половина атомов из некоторой массы. То есть лежащий в земле уран постепенно таковым быть перестает, нагревая окружающее пространство. Процесс распада может спровоцировать влетающий в атом нейтрон, вылетевший из недавно развалившегося атома. Но нейтрон может попасть в атом, а может и улететь мимо. Логичный вывод - что бы атомы разваливались чаще, надо что бы их было вокруг больше, то есть что бы плотность вещества была большая в момент, когда нужно организовать взрыв. Помните еще понятие "критическая масса"? Это то количество вещества, когда вылетающих самопроизвольно нейтронов достаточно, что бы вызвать цепную реакцию. То есть "попаданий" в каждый момент времени в атомы будет больше чем "разрушений".


Итак, вырисовывается схема. Возьмем несколько кусков урана докритической массы и соединим их в один блок сверхкритической массы. И тогда произойдёт взрыв.

К счастью, все не так просто, вопрос в том, как именно происходит соединение. Если сближать два докритических куска на некоторое расстояние, то они начнут разогреваться от обмена друг с другом вылетающими нейтронами. Реакция распада от этого усиливается и происходит все большее выделениее энергии. Сблизим ещё сильнее – раскалятся докрасна. Потом добела. Потом расплавятся. Расплав, сближаясь краями, начнёт разогреваться далее и испаряться, и никакой теплосъём или остужение не смогут предотвратить расплавление и испарение, слишком велики запасы энергии в уране.

Поэтому, как куски не сближай бытовыми способами, они до того, как соединиться, расплавят и испарят любое устройство, осуществляющее это сближение, и испарятся сами, разлетевшись, расширившись, удалившись друг от друга и тогда лишь остыв, потому что окажутся на возросшем взаимном удалении. Слепить же куски в один сверхкритический можно, только развив такие огромные скорости сближения, что рост плотности нейтронного потока не будет поспевать за сближением кусков. Это достигается при скоростях сближения порядка 2.5 км в секунду. Вот тогда они успеют влипнуть друг в друга прежде, чем разогреются от энерговыделения. И тогда последующее энерговыделение будет таким пиковым, что возникнет ядерный взрыв с грибом. Порохом до таких скоростей разогнать невозможно – малы размеры бомбы и путей разгона. Поэтому разгоняют взрывчаткой, комбинируя «медленную» и «быструю» взрывчатки, ибо сразу «быстрая» взрывчатка вызовет разрушение куска ударной волной. Но в итоге получают главное – обеспечивают скорость перевода системы в сверхкритическое состояние до того, как она разрушится тепловым образом из-за растущего тепловыделения при сближении. Такая схема называется «пушечной», потому что докритические куски «выстреливаются» навстречу друг другу, успевая соединиться в один сверхкритический кусок и после этого пиковым образом высвободить мощность атомного взрыва.

Осуществить такой процесс на практике крайне сложно - необходим правильный подбор и очень точное совпадение тысяч параметров. Это не взрывчатка, которая взрывается во многих случаях. Просто срабатывание детонаторов и зарядов в бомбе будет, а выделяемая практическая мощность - не будет наблюдаться, будет крайне низкой при очень узкой зоне осуществления активного взрыва. Необходима микросекундная точность срабатывания большого количества зарядов. Необходима устойчивость атомного вещества. Помните ведь, что кроме инициированной реакции распада, есть еще самопроизвольный, вероятностный, процесс. То есть собранная бомба с течением времени постепенно меняет свои свойства. Именно поэтому различают оружейное атомное вещество и то, которое не подходит для создания бомбы. Поэтому не делают атомные бомбы из реакторного плутония, ибо такая бомба будет слишком неустойчивой и опасной скорее для изготовителя, чем для потенциального противника. Процесс разделения атомного вещества на изотопы сам по себе крайне сложен и дорогостоящ, осуществление его возможно лишь в серьезных ядерных центрах. И это радует.

conymac.livejournal.com

Как устроено Ядерное оружие | КакУстроен.ру



Что мы знаем о ядерном оружии?

  • Что пока ничего страшнее человечество не придумало (точнее, на практике не воплотило).
  • Что после первых испытаний ядерной бомбы Роберт Оппенгеймер, один из её творцов, сказал: «Я стал смертью, разрушителем миров».
  • Что жители Хиросимы и Нагасаки вскоре узнали на себе, что такое ядерная бомбардировка.
  • Что сейчас КНДР хочет завести у себя ядерный арсенал, а страны, у которых он уже есть, очень этим недовольны.
  • Что во втором «Терминаторе» есть пробирающая до дрожи сцена, где ядерный взрыв уничтожает город со всеми его жителями.
  • Что взрыв ядерной бомбы имеет форму гриба, и на него нельзя смотреть.
  • Что ядерную бомбу делают из плутония… или урана?

А вот этого-то мы зачастую и не знаем. И почему ядерная бомба взрывается, тоже…

Начнём издалека. У каждого атома есть ядро, а ядро состоит из протонов и нейтронов – это знают, пожалуй, все. Точно так же все видели таблицу Менделеева. Но почему химические элементы в ней размещены именно так, а не иначе? Уж наверняка не потому, что Менделееву так захотелось. Порядковый номер каждого элемента в таблице указывает на то, сколько протонов находится в ядре атома этого элемента. Иными словами, железо стоит 26-м номером в таблице, потому что в атоме железа 26 протонов. А если их не 26, это уже не железо.

Но вот нейтронов в ядрах одного и того же элемента может быть разное количество, а значит, и масса у ядер бывает разная. Атомы одного и того же элемента с разной массой называются изотопами. У урана таких изотопов несколько: самый распространённый в природе – уран-238 (в его ядре 92 протона и 146 нейтронов, вместе получается 238). Он радиоактивен, но ядерную бомбу из него не изготовишь. А вот изотоп уран-235, небольшое количество которого есть в урановых рудах, для ядерного заряда годится.

Возможно, читатель сталкивался с выражениями «обогащённый уран» и «обеднённый уран». В обогащённом уране больше урана-235, чем в природном; в обеднённом, соответственно – меньше. Из обогащённого урана можно получить плутоний – другой элемент, пригодный для ядерной бомбы (в природе он почти не встречается). Как обогащают уран и как из него получают плутоний – тема отдельного разговора.

Итак, почему ядерная бомба взрывается? Дело в том, что некоторые тяжёлые ядра имеют свойство распадаться, если в них попадёт нейтрон. А уж свободного нейтрона долго ждать не придётся – их вокруг очень много летает. Итак, попадает такой нейтрон в ядро урана-235 и тем самым разбивает его на «осколки». При этом высвобождается ещё несколько нейтронов. Догадываетесь, что произойдёт, если вокруг будут ядра того же элемента? Правильно, произойдёт цепная реакция.

Вот так это происходит.

В ядерном реакторе, где уран-235 «растворён» в более стабильном уране-238, взрыва при нормальных условиях не происходит. Большинство нейтронов, которые вылетают из распадающихся ядер, улетает «в молоко», не находя ядер урана-235. В реакторе распад ядер идёт «вяло» (но этого хватает, чтобы реактор давал энергию). Вот в цельном куске урана-235, если он будет достаточной массы, нейтроны будут гарантированно разбивать ядра, цепная реакция пойдёт лавиной, и… Стоп! Ведь если изготовить кусок урана-235 или плутония нужной для взрыва массы, он сразу же и взорвётся. Это не дело.

А если взять два куска докритической массы, и столкнуть их друг с другом при помощи механизма на дистанционном управлении? Например, поместить оба в трубку и к одному прикрепить пороховой заряд, чтобы в нужный момент выстрелить одним куском, как снарядом, в другой. Вот и решение проблемы.

Можно поступить иначе: взять шарообразный кусок плутония и по всей его поверхности закрепить взрывные заряды. Когда эти заряды по команде извне сдетонируют, их взрыв сожмёт плутоний со всех сторон, сдавит его до критической плотности, и произойдёт цепная реакция. Однако тут важны точность и надёжность: все взрывные заряды должны сработать одновременно. Если часть из них сработает, а часть – нет, или часть сработает с опозданием, никакого ядерного взрыва не выйдет: плутоний не сожмётся до критической массы, а рассеется в воздухе. Вместо ядерной бомбы получится так называемая «грязная».



Так выглядит ядерная бомба имплозионного типа. Заряды, которые должны создать направленный взрыв, выполнены в форме многогранников, чтобы как можно плотнее охватить поверхность плутониевой сферы.

Устройство первого типа назвали пушечным, второго типа – имплозионным.
Бомба «Малыш», сброшенная на Хиросиму, имела заряд из урана-235 и устройство пушечного типа. Бомба «Толстяк», взорванная над Нагасаки, несла плутониевый заряд, а взрывное устройство было имплозионным. Сейчас устройства пушечного типа почти не используются; имплозионные сложнее, но в то же время позволяют регулировать массу ядерного заряда и расходовать его более рационально. Да и плутоний как ядерная взрывчатка вытеснил уран-235.

Прошло совсем немного лет, и физики предложили военным ещё более мощную бомбу – термоядерную, или, как её ещё называют, водородную. Получается, водород взрывается сильнее плутония?

Водород действительно взрывоопасен, но не настолько. Впрочем, «обычного» водорода в водородной бомбе нет, в ней используются его изотопы – дейтерий и тритий. У ядра «обычного» водорода один нейтрон, у дейтерия – два, у трития – три.

В ядерной бомбе ядра тяжёлого элемента делятся на ядра более лёгких. В термоядерной идёт обратный процесс: лёгкие ядра сливаются друг с другом в более тяжёлые. Ядра дейтерия и трития, к примеру, соединяются в ядра гелия (иначе называемые альфа-частицами), а «лишний» нейтрон отправляется в «свободный полёт». При этом выделяется значительно больше энергии, чем при распаде ядер плутония. Кстати, именно этот процесс идёт на Солнце.

Однако реакция слияния возможна только при сверхвысоких температурах (почему она и называется ТЕРМОядерной). Как заставить дейтерий и тритий вступить в реакцию? Да очень просто: нужно использовать как детонатор ядерную бомбу!

Поскольку дейтерий и тритий сами по себе стабильны, их заряд в термоядерной бомбе может быть сколь угодно огромным. А значит, термоядерную бомбу можно сделать несравненно мощнее «простой» ядерной. «Малыш», сброшенный на Хиросиму, имел тротиловый эквивалент в пределах 18 килотонн, а самая мощная водородная бомба (так называемая «Царь-бомба», она же «Кузькина мать») – уже 58,6 мегатонн, более чем в 3255 раз мощнее «Малыша»!




Облако-«гриб» от «Царь-бомбы» поднялось на высоту 67 километров, а взрывная волна трижды обогнула земной шар.

Однако такая гигантская мощность явно избыточна. «Наигравшись» с мегатонными бомбами, военные инженеры и физики пошли по другому пути – пути миниатюризации ядерного оружия. В обычном виде ядерные боеприпасы можно сбрасывать со стратегических бомбардировщиков, как авиабомбы, или запускать с баллистическими ракетами; если же их миниатюризировать, получится компактный ядерный заряд, который не разрушает всё на километры вокруг, и который можно поставить на артиллерийский снаряд или ракету «воздух-земля». Повысится мобильность, расширится спектр решаемых задач. В дополнение к стратегическому ядерному оружию мы получим тактическое.

Для тактического ядерного оружия разрабатывались самые разные средства доставки – ядерные пушки, миномёты, безоткатные орудия (например, американский «Дэви Крокетт»). В СССР даже был проект ядерной пули. Правда, от него пришлось отказаться – ядерные пули были так ненадёжны, так сложны и до́роги в изготовлении и хранении, что в них не было никакого смысла.



«Дэви Крокетт». Некоторое количество этих ядерных орудий состояло на вооружении ВС США, а западногерманский министр обороны безуспешно добивался того, чтобы ими вооружили и Бундесвер.

Говоря о малых ядерных боеприпасах, стоит упомянуть и другую разновидность ядерного оружия – нейтронную бомбу. Заряд плутония в ней невелик, но это и не нужно. Если термоядерная бомба идёт по пути наращивания силы взрыва, то нейтронная делает ставку на другой поражающий фактор – радиацию. Для усиления радиации в нейтронной бомбе есть запас изотопа бериллия, который при взрыве даёт огромное количество быстрых нейтронов.

По замыслу её создателей, нейтронная бомба должна убивать живую силу противника, но оставлять в целости технику, которую можно потом захватить при наступлении. На практике получилось несколько иначе: облучённая техника становится непригодной к использованию – любой, кто рискнёт её пилотировать, очень скоро «заработает» себе лучевую болезнь. Это не отменяет того факта, что взрыв нейтронной бомбы способен поразить врага через танковую броню; нейтронные боеприпасы разрабатывались США именно как оружие против советских танковых соединений. Впрочем, вскоре была разработана танковая броня, обеспечивающая какую-никакую защиту и от потока быстрых нейтронов.

Ещё один вид ядерного оружия был придуман в 1950 году, но никогда (насколько это известно) не производился. Это так называемая кобальтовая бомба – ядерный заряд с оболочкой из кобальта. При взрыве кобальт, облучённый потоком нейтронов, становится крайне радиоактивным изотопом и рассеивается по местности, заражая её. Всего одна такая бомба достаточной мощности могла бы покрыть кобальтом весь земной шар и погубить всё человечество. К счастью, этот проект остался проектом.

Что можно сказать в заключение? Ядерная бомба – действительно страшное оружие, и вместе с тем оно (вот ведь парадокс!) помогло сохранить относительный мир между сверхдержавами. Если у твоего противника есть ядерное оружие, ты десять раз подумаешь, прежде чем на него нападать. Ни одна страна с ядерным арсеналом ещё не подвергалась атаке извне, и после 1945 года в мире не было войн между крупными государствами. Будем надеяться, что их и не будет.

kakustroen.ru

Какой принцип действия атомной бомбы??? 7

О, классный вопрос для такой аватарки.. . Принцип - цепная реакция. То есть такая, где сам ход реакции инициирует её продолжение. Ядро НЕКОТОРЫХ (а не любых радиоактивных! ) изотопов урана, плутония, калифорния.. . способно распадаться, захватив нейтрон. При таком распаде выделяется ещё два-три нейтрона. То есть распад ОДНОГО ядра может, в идеальных условиях, вызвать распад ещё двух-трёх ядер, те могут вызвать распад ещё нескольких.. . и так далее, то есть инициируется лавинный процесс распада всё большего и большего числа ядер. И распад каждого ядра идёт с высвобождением энергии. Поскольку энергии выделяется много (в миллионы раз больше, чем при химической ракции взрыва тротила) , а время взыва крайне мало, то мощность взрыва получается огромной. Ну а тонкость - что для того, чтоб уран, или плутоний, или ещё какая фигня взорвалась, его масса должна превышать некоторый порог (критическую массу) . Потому что если его слишком мало - образовавшийся нейтрон вылетит на фиг, не успев поглотиться другим ядром. Ну и это же даёт ключ к конструкции бомбы - это несколько МАЛЕНЬКИХ кусков начинки, которые, пока они по отдельности, не взрываются. А чтоб они взорвались - их приводят в соприкосновение. Тогда они образуют один большой кусок с массой, превышающей критическую. Ну и бабах.

принцип действия-сначала бабах, потом глобальный п.... ц!

1) Световая волна; 2)Взрывная волна; 3)Термоволна; 4)Звуковая волна и всё это счастье в доли секунды!!!

А теперь рассмотрим, как происходит реакция термоядерного синтеза. Во-первых, для того, чтобы эта реакция произошла, надо чтобы взаимодействующие ядра освободились от своих электронов и превратились в так называемую ионизированную плазму. Этого легко достичь, разогрев атомы дейтерия до температуры, при которой электроны приобретают достаточную энергию, чтобы оторваться от ядер. Вторым условием протекания реакции термоядерного синтеза является сближение ядер на расстояние меньше 10 –13 см, когда начинает эффективно действовать короткодействующая ядерная сила притяжения. В ионизированной плазме, для того чтобы сблизить ядра необходимо преодолеть дальнодействующую силу электростатического (кулоновского) отталкивания, возникающую при сближении заряженных частиц одного знака. Преодолеть эту силу можно, придав заряженным ядрам кинетическую энергию, достаточную для преодоления электростатического барьера. В случае плазмы дейтерия эта сила составляет минимум 10 кэВ, при которой вероятность образования гелия при столкновении двух ядер дейтерия становится чуть выше нуля. Чем больше кинетическая энергия столкновения ядер дейтерия, тем выше вероятность возникновения реакции термоядерного синтеза. Кинетическая энергия частицам передаётся при разогреве плазмы до сверхвысоких температур. Энергия 10 кэВ соответствует температуре плазмы в 100 миллионов градусов. Наиболее эффективно реакция термоядерного синтеза проходит при температуре 200 миллионов градусов. Резюмируя вышесказанное, получение полезной термоядерной энергии возможно лишь при выполнении следующих условий. Во-первых, предназначенная для синтеза смесь должна быть нагрета до температуры, при которой кинетическая энергия ядер обеспечивает высокую вероятность их слияния при столкновении. Во-вторых, реагирующая смесь должна быть очень хорошо термоизолирована, т. е. высокая температура должна поддерживаться достаточно долго, чтобы произошло необходимое число реакций и, выделившаяся за счет этого энергия, превышала энергию, затраченную на нагрев топлива. Ещё одна проблема состояла в том, чтобы заставить ядра сблизиться на достаточно малое расстояние. Сверхвысокое давление, обеспечивающее это в звездах, объясняется невозможной на Земле силой гравитации (или притяжения масс) . В земных условиях нужное сжатие обеспечивал «обычный» ядерный взрыв, и на этом была основана водородная бомба. Взрываем небольшую атомную бомбу (принцип действия которой основан на делении тяжелых элементов урана или плутония) и получаем в эпицентре искомые условия. Если там окажется некоторое количество тяжелых изотопов водорода, то начнется неуправляемая термоядерная реакция. Подобные «эксперименты» практически одновременно были проведены в 1952-53 годах советскими и американскими физиками. Кстати, за успешное испытание водородной (термоядерной) бомбы советский физик Андрей Сахаров получил звание академика в 32 года. Каким образом происходит разогрев и удержание плазмы высокой плотности для проведения управляемой реакции термоядерного синтеза? Техническая проблема поддержания реакции управляемого термоядерного синтеза достаточно длительное время заключается в том, что водородная плазма, разогретая до температур сотни миллионов градусов, мгновенно испарит любой сосуд, в который заключена. На сегодняшний день не <img src="//content.foto.my.mail.ru/mail/danchev56/_answers/i-233.jpg" >

В основу ядерного оружия положены неуправляемые цепная реакция деления тяжелых ядер и реакции термоядерного синтеза. Для осуществления цепной реакции деления используются либо уран-235, либо плутоний-239, либо, в отдельных случаях, уран-233. Уран в природе встречается в виде двух основных изотопов — уран-235 (0,72 % природного урана) и уран-238 — всё остальное (99,2745 %). Обычно встречается также примесь из урана-234 (0,0055 %), образованная распадом урана-238. Однако, в качестве делящегося вещества можно использовать только уран-235. В уране-238 самостоятельное развитие цепной ядерной реакции невозможно (поэтому он и распространен в природе) . Для обеспечения «работоспособности» ядерной бомбы содержание урана-235 должно быть не ниже 80 %. Поэтому при производстве ядерного топлива для повышения доли урана-235 и применяют сложный и крайне затратный процесс обогащения урана. В США степень обогащенности оружейного урана (доля изотопа 235) превышает 93 % и иногда доводится до 97,5 %. Альтернативой химическому процессу обогащения урана служит создание «плутониевой бомбы» на основе изотопа плутоний-239, который для увеличения стабильности физических свойств и улучшения сжимаемости заряда обычно легируется небольшим количеством галлия. Плутоний вырабатывается в ядерных реакторах в процессе длительного облучения урана-238 нейтронами. Аналогично уран-233 получается при облучении нейтронами тория. В США ядерные боеприпасы снаряжаются сплавом 25 или Oraloy, название которого происходит от Oak Ridge (завод по обогащению урана) и aloy (сплав) . В состав этого сплава входит 25 % урана-235 и 75 % плутония-239. Следует отметить, что сведения об устройстве ядерных боеприпасов до сих пор строго засекречены во всех странах. Только дотошность отдельных западных журналистов и крайне редкие, ничтожные утечки этой закрытой информации, скурпулезно изученные на основе физических знаний, с помощью методов «обратной инженерии» позволили с определенной вероятностью правильно понять основные принципы. Почти все эти сведения относятся к ядерным боеприпасам, произведенным в США. Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная. Пушечная схема характерна для некоторых моделей ядерного оружия первого поколения, а также артиллерийских ядерных боеприпасов, имеющих ограничения по калибру орудия. Выстрел ядерным снарядом из 280 мм гаубицы. Полигон в Неваде, 1953 г. Пушечная схема -вероятность преждевременного развития цепной реакции до соединения блоков. Имплозивная схема подразумевает получение сверхкритического состояния путём обжатия делящегося материала сфокусированной ударной волной, создаваемой взрывом обычной химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с прецизионной точностью. Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее трудных задач. Формирование сходяшейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток — боратола и ТАТВ

Если коротко - это цепная реакция ядер тяжелых изотопов, например, плутония или урана. Из этой реакции формируется колоссальное количество энергии, которая и образует взрыв. Поражающие факторы атомной бомбы во многом зависят от мощности, цели и типа удара, но в основном это: 1) Вспышка. В зависимости от расстояния есть риск ослепнуть и даже получить смертельные ожоги. 2) Электромагнитный импульс, "убивающий" всю электронику в округе. 3) Ударная волна. 4) Взрывная волна. 5) Радиоактивное заражение.

принцип - радиоактивный распад Урана 235 или Плутония с появлением неконтролируемой цепной ядерной реакции а то, что написал Сергей Серов - это уже действия взрыва 2, 3 и 4 обычно идут вместе.. . +радиоактивное заражение

несколько камер заполненных плутонием не критической массы, снаружи покрытых слоем какого то взрывчатого вещества При его взрыве масса плутония становится в несколько раз выше критической, происходит взрыв

Все слышали, что есть некая критическая масса, которую нужно набрать, чтобы началась цепная ядерная реакция. Вот только для того, чтобы произошел настоящий ядерный взрыв, одной критической массы недостаточно – реакция прекратится практически мгновенно, до того как успеет выделиться заметная энергия. Для полномасштабного взрыва в несколько килотонн или десятков килотонн нужно одномоментно собрать две-три, а лучше четыре-пять критических масс. Кажется очевидным, что нужно сделать две или несколько деталей из урана или плутония и в требуемый момент соединить их. Справедливости ради надо сказать, что так же думали и физики, когда брались за конструирование ядерной бомбы. Но действительность внесла свои коррективы. Дело в том, что если бы у нас был очень чистый уран-235 или плутоний-239, то можно было бы так и сделать, но ученым пришлось иметь дело с реальными металлами. Обогащая природный уран, можно сделать смесь, содержающую 90% урана-235 и 10% урана-238, попытки избавиться от остатка урана-238 ведут к очень быстрому удорожанию этого материала (его называют высокообогащенным ураном) . Плутоний-239, который получают в атомном реакторе из урана238 при делении урана-235, обязательно содержит примесь плутония-240. Изотопы уран235 и плутоний239 называются четно-нечетными, так как ядра их атомов содержат четное число протонов (92 для урана и 94 для плутония) и нечетное число нейтронов (143 и 145 соответственно) . Все четно-нечетные ядра тяжелых элементов обладают общим свойством: они редко делятся самопроизвольно (ученые говорят: «спонтанно») , но легко делятся при попадании в ядро нейтрона. Уран-238 и плутоний-240 – четно-четные. Они, наоборот, практически не делятся нейтронами малых и умеренных энергий, которые вылетают из делящихся ядер, но зато в сотни или десятки тысяч раз чаще делятся спонтанно, образуя нейтронный фон. Этот фон очень сильно затрудняет создание ядерных боеприпасов, потому что вызывает преждевременное начало реакции, до того как встретятся две детали заряда. Из-за этого в подготовленном к взрыву устройстве части критической массы должны быть расположены достаточно далеко друг от друга, а соединяться с большой скоростью. <img src="//content.foto.my.mail.ru/mail/intel1971/_answers/i-123.jpg" >

В 2007 году было озвучено реальное строение атома. Вся современная физика-химия изучает последствие той или иной реакции, подгоняя теории к результатам. Принцип атомного взрыва, это избыток электронов критической массы, синтезирующий атомы газа в огромных количествах за короткий промежуток времени. Разрушения атомов мы наблюдаем в быту ежедневно - открытый огонь. Радиация это причина, а не следствие синтеза. Где радиация (избыток электронов) , там всегда происходит рождение новых атомов газа с мизерной скоростью синтеза. Чем больше учёные открывают тайны материи, тем больше склоняются в сторону искусственного создания вселенной и больше верят в создателя.

touch.otvet.mail.ru

Как работает "грязная атомная бомба"

Как работает "грязная атомная бомба" - страница №1/1


Интерпол располагает информацией об опасности использования террористами так называемой "грязной бомбы". Об этом заявил сотрудник Субдиректората общественной безопасности и терроризма службы Айсу Окана.


В ходе международной встречи, посвященной борьбе с терроризмом, Окана рассказал, что возможность использования террористами радиоактивных дисперсных устройств "ясна уже сейчас". Интерпол в рамках проекта "Гейгер", осуществляемого при помощи Департамента энергетики, Национальной лаборатории США и МАГАТЭ, получил информацию о 2200 различных событиях, связанных с радиологической опасностью.

По словам Айсу Оканы, только в Восточной Европе международная служба выявила 50 попыток продать радиоактивные материалы. Большая часть таких случаев приходится на Украину, а транзит подобных грузов идет через Грузию. В целом полученная информация свидетельствует о том, что террористические группировки стремятся к получению радиоактивных материалов.

Как сообщает "Интерфакс", на встрече также было объявлено, что в настоящее время Россия разыскивает по каналам Интерпола 110 лиц, в основном участников бандформирований и террористических организаций. Руководитель Национального центрального бюро Интерпола при МВД РФ Тимур Лахонин заявил, что развитию международного сотрудничества в этой сфере мешают "двойные стандарты", которые применяются отдельными странами.

Так, по словам Лахонина, за последние годы несколько европейских стран отказали в выдаче российским властям скрывающихся террористов, а один из этих людей, имени которого руководитель бюро Интерпола не назвал, получил статус беженца.

Как работает "грязная атомная бомба"


Что такое "грязная бомба"? Основная идея этого вида оружия заключается в распылении в воздухе большого количества радиоактивного вещества. В отличее от классической атомной бомбы, в которой взрыв происходит в результате стремительной, лавинообразной реакции расщепления атомов урана или плутония, в "грязной" атомной бомбе подрыва атомного заряда не происходит. Взрыв осуществляется посредством подрыва обычного химического заряда.

Взрыв "грязной бомбы" не вызывает таких больших разрушений, какие бывают при использовании ядерного оружия. Использованием такого рода оружия достигается заражение максимальной площади густонаселенной территории противника радиоактивными веществами.

Считается, что "грязные атомные бомбы делают тогда, когда не могут создать настоящую, то есть такую, чей взрыв основан на ядерной реакции. В грязной бомбе используются обычные взрывчатые вещества, "подкисленные" радиоактивными изотопами, чтобы распространить ядерный материал и "заразить" большую площадь.

Эффективность таких "игрушек" в боевых действиях подвергается сомнению практически всеми военными. На самом деле, тротил в такой бомбе может нанести больше ущерба, чем ядерная составляющая, так как разрушительная мощь грязной атомной бомбы на самом деле зависит от ее размера, а также от объема и характеристик используемых в ней ядерных материалов.

Самым распространенным предположением остается то, что те, кто хочет создать грязную атомную бомбу, будут пытаться это сделать просто потому, что это гораздо легче, чем создать обычную. В качестве сырья для изготовления грязной бомбы может быть использовано отработанное топливо атомной станции или материалы атомных центров. Причем в отличие от "обычного" атомного оружия нет необходимости достигать сверхкритической массы атомного заряда. Скорее всего, взрыв грязной бомбы не убьет десять тысяч человек, но при взрыве в густонаселенной местности, например, в городе, точно убьет несколько сот человек и посеет панику среди выживших.

Поэтому почти все ученые называют грязную атомную бомбу "оружием террористов". Остается уповать на компетентность органов надзирающих за оборотом радиоактивных веществ.

shikardos.ru

как работает атомная бомба видео

Как это работает Атомная бомба Толстяк...

HOW IT WORKS • 3 месяца назад

...

Как работает ядерная бомба...

skotch skotchev • 8 месяцев назад

...

КАК УСТРОЕНА АТОМНАЯ БОМБА “МАЛЫШ“...

Сергей Большаков • 11 месяцев назад

АТОМНАЯ БОМБА “МАЛЫШ“...

КАК УСТРОЕНА АТОМНАЯ БОМБА "ТОЛСТЯК"...

Ядерные взрывы в СССР • 1 год назад

Если вам понравилось видео, Вы можете поблагодарить меня или поддержать мой канал: WebMone...

КАК УСТРОЕНА АТОМНАЯ БОМБА "МАЛЫШ"...

Ядерные взрывы в СССР • 1 год назад

Если вам понравилось видео, Вы можете поблагодарить меня или поддержать мой канал: WebMone...

Ядерная бомба. Как работает?...

Троица • 2 года назад

...

Нагасаки Забытая Атомная Бомба !!! Секунды до Ката...

Фильмы National Geographic • 2 года назад

Нагасаки Забытая Атомная Бомба !!! Секунды до Катастрофы !!! National Geographic Уважаемые...

Ядерная бомба своими руками...

MrStealt • 2 года назад

...

Ядерный Взрыв Принцип Действия и Последствия...

Jeson Frost • 2 года назад

...

Почему СССР отказался от атомных пуль...

Izzy ᴸᴬᴵᶠ • 3 года назад

Ошибка в видео: обедненный уран это НЕ отработанное топливо. Почему СССР отказался от атом...

Nil - Что происходит во время взрыва атомной бомбы...

AlexTranslations • 4 года назад

Поддержите канал: WM R389686533481 U330507290710 Яндекс 41001616074670 Наука и Техника Вк...

Атомная бомба...

MercatorInfogr • 5 лет назад

Атомная бомба Атомная бомба основана на энергии ядер, выделяющейся при цепной реакции их д...

Взрыв самой мощной в истории атомной бомбы...

Alexander S • 6 лет назад

Взрыв самой мощной в истории атомной бомбы....

    inlove.kz

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *